Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 13(6): 943-948, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35707160

ABSTRACT

Formyl peptide receptor 2 (FPR2) agonists have shown efficacy in inflammatory-driven animal disease models and have the potential to treat a range of diseases. Many reported synthetic agonists contain a phenylurea, which appears to be necessary for activity in the reported chemotypes. We set out to find isosteres for the phenylurea and focused our efforts on heteroaryl rings. The wide range of potencies with heterocyclic isosteres demonstrates how electronic effects of the heteroatom placement impact molecular recognition. Herein, we report our discovery of benzimidazole and aminophenyloxadiazole FPR2 agonists with low nanomolar activity.

2.
JACC Basic Transl Sci ; 6(8): 676-689, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34466754

ABSTRACT

Dysregulated inflammation following myocardial infarction (MI) leads to maladaptive healing and remodeling. The study characterized and evaluated a selective formyl peptide receptor 2 (FPR2) agonist BMS-986235 in cellular assays and in rodents undergoing MI. BMS-986235 activated G proteins and promoted ß-arrestin recruitment, enhanced phagocytosis and neutrophil apoptosis, regulated chemotaxis, and stimulated interleukin-10 and monocyte chemoattractant protein-1 gene expression. Treatment with BMS-986235 improved mouse survival, reduced left ventricular area, reduced scar area, and preserved wall thickness. Treatment increased macrophage arginase-1 messenger RNA and CD206 receptor levels indicating a proresolution phenotype. In rats following MI, BMS-986235 preserved viable myocardium, attenuated left ventricular remodeling, and increased ejection fraction relative to control animals. Therefore, FPR2 agonism improves post-MI healing, limits remodeling and preserves function, and may offer an innovative therapeutic option to improve outcomes.

3.
J Med Chem ; 63(17): 9003-9019, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32407089

ABSTRACT

Formyl peptide receptor 2 (FPR2) agonists can stimulate resolution of inflammation and may have utility for treatment of diseases caused by chronic inflammation, including heart failure. We report the discovery of a potent and selective FPR2 agonist and its evaluation in a mouse heart failure model. A simple linear urea with moderate agonist activity served as the starting point for optimization. Introduction of a pyrrolidinone core accessed a rigid conformation that produced potent FPR2 and FPR1 agonists. Optimization of lactam substituents led to the discovery of the FPR2 selective agonist 13c, BMS-986235/LAR-1219. In cellular assays 13c inhibited neutrophil chemotaxis and stimulated macrophage phagocytosis, key end points to promote resolution of inflammation. Cardiac structure and functional improvements were observed in a mouse heart failure model following treatment with BMS-986235/LAR-1219.


Subject(s)
Pyrrolidinones/chemistry , Receptors, Formyl Peptide/agonists , Receptors, Lipoxin/agonists , Animals , Chemotaxis/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , HEK293 Cells , Heart Failure/pathology , Heart Failure/prevention & control , Humans , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mice , Microsomes, Liver/metabolism , Neutrophils/cytology , Neutrophils/physiology , Phagocytosis/drug effects , Pyrrolidinones/metabolism , Pyrrolidinones/pharmacology , Pyrrolidinones/therapeutic use , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/genetics , Receptors, Lipoxin/metabolism , Structure-Activity Relationship
4.
JACC Basic Transl Sci ; 4(8): 905-920, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31909300

ABSTRACT

Dysregulated inflammation following myocardial infarction (MI) promotes left ventricular (LV) remodeling and loss of function. Targeting inflammation resolution by activating formyl peptide receptors (FPRs) may limit adverse remodeling and progression towards heart failure. This study characterized the cellular and signaling properties of Compound 43 (Cmpd43), a dual FPR1/FPR2 agonist, and examined whether Cmpd43 treatment improves LV and infarct remodeling in rodent MI models. Cmpd43 stimulated FPR1/2-mediated signaling, enhanced proresolution cellular function, and modulated cytokines. Cmpd43 increased LV function and reduced chamber remodeling while increasing proresolution macrophage markers. The findings demonstrate that FPR agonism improves cardiac structure and function post-MI.

5.
ACS Med Chem Lett ; 7(12): 1207-1212, 2016 Dec 08.
Article in English | MEDLINE | ID: mdl-27994765

ABSTRACT

Introducing a uniquely substituted phenyl sulfone into a series of biphenyl imidazole liver X receptor (LXR) agonists afforded a dramatic potency improvement for induction of ATP binding cassette transporters, ABCA1 and ABCG1, in human whole blood. The agonist series demonstrated robust LXRß activity (>70%) with low partial LXRα agonist activity (<25%) in cell assays, providing a window between desired blood cell ABCG1 gene induction in cynomolgus monkeys and modest elevation of plasma triglycerides for agonist 15. The addition of polarity to the phenyl sulfone also reduced binding to the plasma protein, human α-1-acid glycoprotein. Agonist 15 was selected for clinical development based on the favorable combination of in vitro properties, excellent pharmacokinetic parameters, and a favorable lipid profile.

6.
Cell Metab ; 24(2): 223-33, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27508871

ABSTRACT

The development of LXR agonists for the treatment of coronary artery disease has been challenged by undesirable properties in animal models. Here we show the effects of an LXR agonist on lipid and lipoprotein metabolism and neutrophils in human subjects. BMS-852927, a novel LXRß-selective compound, had favorable profiles in animal models with a wide therapeutic index in cynomolgus monkeys and mice. In healthy subjects and hypercholesterolemic patients, reverse cholesterol transport pathways were induced similarly to that in animal models. However, increased plasma and hepatic TG, plasma LDL-C, apoB, apoE, and CETP and decreased circulating neutrophils were also evident. Furthermore, similar increases in LDL-C were observed in normocholesterolemic subjects and statin-treated patients. The primate model markedly underestimated human lipogenic responses and did not predict human neutrophil effects. These studies demonstrate both beneficial and adverse LXR agonist clinical responses and emphasize the importance of further translational research in this area.


Subject(s)
Cell Movement , Imidazoles/adverse effects , Imidazoles/pharmacology , Lipid Metabolism , Lipoproteins/metabolism , Liver X Receptors/agonists , Neutrophils/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Adipose Tissue/metabolism , Adolescent , Adult , Animals , Cell Movement/drug effects , Cholesterol/blood , Cholesterol/metabolism , Healthy Volunteers , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypercholesterolemia/blood , Hypercholesterolemia/drug therapy , Imidazoles/therapeutic use , Leukocyte Count , Lipoproteins/blood , Macaca fascicularis , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mononuclear Phagocyte System/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Triglycerides/blood , Young Adult
7.
Bioorg Med Chem Lett ; 25(2): 372-7, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25435151

ABSTRACT

A series of biaryl pyrazole and imidazole Liver X Receptor (LXR) partial agonists has been synthesized displaying LXRß selectivity. The LXRß selective partial agonist 18 was identified with potent induction of ATP binding transporters ABCA1 and ABCG1 in human whole blood (EC50=1.2µM, 55% efficacy). In mice 18 displayed peripheral induction of ABCA1 at 3 and 10mpk doses with no significant elevation of plasma or hepatic triglycerides at these doses, showing an improved profile compared to a full pan-agonist.


Subject(s)
ATP Binding Cassette Transporter 1/blood , Imidazoles/pharmacology , Liver/drug effects , Orphan Nuclear Receptors/agonists , Pyrazoles/pharmacology , Sulfones/pharmacology , Animals , Drug Partial Agonism , Humans , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Liver/metabolism , Liver X Receptors , Mice , Models, Molecular , Molecular Structure , Plasma/chemistry , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacokinetics , Tissue Distribution , Triglycerides/metabolism
8.
J Pharmacol Exp Ther ; 352(2): 305-14, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25467132

ABSTRACT

Liver X Receptors (LXRs) α and ß are nuclear hormone receptors that regulate multiple genes involved in reverse cholesterol transport (RCT) and are potential drug targets for atherosclerosis. However, full pan agonists also activate lipogenic genes, resulting in elevated plasma and hepatic lipids. We report the pharmacology of BMS-779788 [2-(2-(1-(2-chlorophenyl)-1-methylethyl)-1-(3'-(methylsulfonyl)-4-biphenylyl)-1H-imidazol-4-yl)-2-propanol], a potent partial LXR agonist with LXRß selectivity, which has an improved therapeutic window in the cynomolgus monkey compared with a full pan agonist. BMS-779788 induced LXR target genes in blood in vivo with an EC50 = 610 nM, a value similar to its in vitro blood gene induction potency. BMS-779788 was 29- and 12-fold less potent than the full agonist T0901317 in elevating plasma triglyceride and LDL cholesterol, respectively, with similar results for plasma cholesteryl ester transfer protein and apolipoprotein B. However, ABCA1 and ABCG1 mRNA inductions in blood, which are critical for RCT, were comparable. Increased liver triglyceride was observed after 7-day treatment with BMS-779788 at the highest dose tested and was nearly identical to the dose response for plasma triglyceride, consistent with the central role of liver LXR in these lipogenic effects. Dose-dependent increases in biliary cholesterol and decreases in phospholipid and bile acid occurred in BMS-779788-treated animals, similar to LXR agonist effects reported in mouse. In summary, BMS-779788, a partial LXRß selective agonist, has decreased lipogenic potential compared with a full pan agonist in cynomolgus monkeys, with similar potency in the induction of genes known to stimulate RCT. This provides support in nonhuman primates for improving LXR agonist therapeutic windows by limiting LXRα activity.


Subject(s)
Anticholesteremic Agents/pharmacology , Imidazoles/pharmacology , Liver/drug effects , Orphan Nuclear Receptors/agonists , Sulfones/pharmacology , ATP-Binding Cassette Transporters/blood , ATP-Binding Cassette Transporters/genetics , Animals , Anticholesteremic Agents/administration & dosage , Anticholesteremic Agents/blood , Dose-Response Relationship, Drug , Drug Partial Agonism , Imidazoles/administration & dosage , Imidazoles/blood , Lipids/blood , Lipogenesis/drug effects , Liver/metabolism , Liver X Receptors , Macaca fascicularis , Male , Sulfones/administration & dosage , Sulfones/blood , Triglycerides/metabolism
9.
PLoS One ; 8(2): e53192, 2013.
Article in English | MEDLINE | ID: mdl-23383297

ABSTRACT

BACKGROUND: Chronic glucocorticoid excess has been linked to increased atherosclerosis and general cardiovascular risk in humans. The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ßHSD1) increases active glucocorticoid levels within tissues by catalyzing the conversion of cortisone to cortisol. Pharmacological inhibition of 11ßHSD1 has been shown to reduce atherosclerosis in murine models. However, the cellular and molecular details for this effect have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: To examine the role of 11ßHSD1 in atherogenesis, 11ßHSD1 knockout mice were created on the pro-atherogenic apoE⁻/⁻ background. Following 14 weeks of Western diet, aortic cholesterol levels were reduced 50% in 11ßHSD1⁻/⁻/apoE⁻/⁻ mice vs. 11ßHSD1⁺/⁺/apoE⁻/⁻ mice without changes in plasma cholesterol. Aortic 7-ketocholesterol content was reduced 40% in 11ßHSD1⁻/⁻/apoE⁻/⁻ mice vs. control. In the aortic root, plaque size, necrotic core area and macrophage content were reduced ∼30% in 11ßHSD1⁻/⁻/apoE⁻/⁻mice. Bone marrow transplantation from 11ßHSD1⁻/⁻/apoE⁻/⁻ mice into apoE⁻/⁻ recipients reduced plaque area 39-46% in the thoracic aorta. In vivo foam cell formation was evaluated in thioglycollate-elicited peritoneal macrophages from 11ßHSD1⁺/⁺/apoE⁻/⁻ and 11ßHSD1⁻/⁻/apoE⁻/⁻ mice fed a Western diet for ∼5 weeks. Foam cell cholesterol levels were reduced 48% in 11ßHSD1⁻/⁻/apoE⁻/⁻ mice vs. control. Microarray profiling of peritoneal macrophages revealed differential expression of genes involved in inflammation, stress response and energy metabolism. Several toll-like receptors (TLRs) were downregulated in 11ßHSD1⁻/⁻/apoE⁻/⁻ mice including TLR 1, 3 and 4. Cytokine release from 11ßHSD1⁻/⁻/apoE⁻/⁻-derived peritoneal foam cells was attenuated following challenge with oxidized LDL. CONCLUSIONS: These findings suggest that 11ßHSD1 inhibition may have the potential to limit plaque development at the vessel wall and regulate foam cell formation independent of changes in plasma lipids. The diminished cytokine response to oxidized LDL stimulation is consistent with the reduction in TLR expression and suggests involvement of 11ßHSD1 in modulating binding of pro-atherogenic TLR ligands.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Foam Cells/metabolism , Glucocorticoids/metabolism , Analysis of Variance , Animals , Atherosclerosis/prevention & control , Blood Pressure , Bone Marrow Transplantation , Cholesterol/metabolism , Diet, Atherogenic , Ketocholesterols/metabolism , Lipids/blood , Male , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Toll-Like Receptors/metabolism
10.
J Med Chem ; 52(9): 2794-8, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19351168

ABSTRACT

A novel selective androgen receptor modulator (SARM) scaffold was discovered as a byproduct obtained during synthesis of our earlier series of imidazolidin-2-ones. The resulting oxazolidin-2-imines are among the most potent SARMs known, with many analogues exhibiting sub-nM in vitro potency in binding and functional assays. Despite the potential for hydrolytic instability at gut pH, compounds of the present class showed good oral bioavailability and were highly active in a standard rodent pharmacological model.


Subject(s)
Androgens , Muscles/drug effects , Muscles/metabolism , Oxazoles/chemistry , Oxazoles/pharmacology , Animals , Crystallography, X-Ray , Humans , Hydrogen-Ion Concentration , Male , Models, Molecular , Molecular Conformation , Prostate/drug effects , Prostate/metabolism , Rats , Substrate Specificity
11.
J Med Chem ; 50(13): 3015-25, 2007 Jun 28.
Article in English | MEDLINE | ID: mdl-17552509

ABSTRACT

A novel series of imidazolin-2-ones were designed and synthesized as highly potent, orally active and muscle selective androgen receptor modulators (SARMs), with most of the compounds exhibiting low nM in vitro potency in androgen receptor (AR) binding and functional assays. Once daily oral treatment with the lead compound 11a (AR Ki = 0.9 nM, EC50 = 1.8 nM) for 14 days induced muscle growth with an ED50 of 0.09 mg/kg, providing approximately 50-fold selectivity over prostate growth in an orchidectomized rat model. Pharmacokinetic studies in rats demonstrated that the lead compound 11a had oral bioavailability of 65% and a plasma half-life of 5.5 h. On the basis of their preclinical profiles, the SARMs in this series are expected to provide beneficial anabolic effects on muscle with minimal androgenic effects on prostate tissue.


Subject(s)
Anabolic Agents/chemical synthesis , Imidazoles/chemical synthesis , Muscle, Skeletal/drug effects , Pyrroles/chemical synthesis , Receptors, Androgen/metabolism , Administration, Oral , Anabolic Agents/pharmacokinetics , Anabolic Agents/pharmacology , Animals , Biological Availability , Crystallography, X-Ray , Half-Life , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Male , Models, Molecular , Muscle, Skeletal/anatomy & histology , Orchiectomy , Prostate/anatomy & histology , Prostate/drug effects , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 17(7): 1860-4, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17292608

ABSTRACT

Pharmacokinetic studies in cynomolgus monkeys with a novel prototype selective androgen receptor modulator revealed trace amounts of an aniline fragment released through hydrolytic metabolism. This aniline fragment was determined to be mutagenic in an Ames assay. Subsequent concurrent optimization for target activity and avoidance of mutagenicity led to the identification of a pharmacologically superior clinical candidate without mutagenic potential.


Subject(s)
Androgen Antagonists/chemistry , Androgen Antagonists/chemical synthesis , Chemistry, Pharmaceutical/methods , Hydantoins/chemistry , Hydantoins/chemical synthesis , Receptors, Androgen/metabolism , Androgen Antagonists/pharmacology , Animals , Drug Design , Escherichia coli/metabolism , Genes, Reporter , Kinetics , Macaca fascicularis , Models, Chemical , Molecular Conformation , Mutagenesis , Mutagens , Structure-Activity Relationship
14.
Endocrinology ; 148(1): 4-12, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17008401

ABSTRACT

A novel, highly potent, orally active, nonsteroidal tissue selective androgen receptor (AR) modulator (BMS-564929) has been identified, and this compound has been advanced to clinical trials for the treatment of age-related functional decline. BMS-564929 is a subnanomolar AR agonist in vitro, is highly selective for the AR vs. other steroid hormone receptors, and exhibits no significant interactions with SHBG or aromatase. Dose response studies in castrated male rats show that BMS-564929 is substantially more potent than testosterone (T) in stimulating the growth of the levator ani muscle, and unlike T, highly selective for muscle vs. prostate. Key differences in the binding interactions of BMS-564929 with the AR relative to the native hormones were revealed through x-ray crystallography, including several unique contacts located in specific helices of the ligand binding domain important for coregulatory protein recruitment. Results from additional pharmacological studies effectively exclude alternative mechanistic contributions to the observed tissue selectivity of this unique, orally active androgen. Because concerns regarding the potential hyperstimulatory effects on prostate and an inconvenient route of administration are major drawbacks that limit the clinical use of T, the potent oral activity and tissue selectivity exhibited by BMS-564929 are expected to yield a clinical profile that provides the demonstrated beneficial effects of T in muscle and other tissues with a more favorable safety window.


Subject(s)
Imidazoles/chemical synthesis , Imidazoles/pharmacology , Muscle, Skeletal/drug effects , Prostate/drug effects , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Receptors, Androgen/metabolism , Testosterone/analogs & derivatives , Aging/metabolism , Animals , Aromatase/metabolism , Binding, Competitive , Cell Division/drug effects , Cell Line, Tumor , Crystallography, X-Ray , Dihydrotestosterone/chemistry , Dihydrotestosterone/metabolism , Epithelial Cells/cytology , Epithelial Cells/drug effects , Humans , Imidazoles/metabolism , Ligands , Luteinizing Hormone/blood , Male , Muscle, Skeletal/physiology , Orchiectomy , Prostate/physiology , Protein Structure, Tertiary , Pyrroles/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Androgen/chemistry , Receptors, Androgen/genetics , Testosterone/chemistry , Testosterone/metabolism , Transcription, Genetic/physiology
15.
J Med Chem ; 49(26): 7596-9, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181141

ABSTRACT

A novel, N-aryl-bicyclohydantoin selective androgen receptor modulator scaffold was discovered through structure-guided modifications of androgen receptor antagonists. A prototype compound (7R,7aS)-10b from this series is a potent and highly tissue-selective agonist of the androgen receptor. After oral dosing in a rat atrophied levator ani muscle model, (7R,7aS)-10b demonstrated efficacy at restoring levator ani muscle mass to that of intact controls and exhibited >50-fold selectivity for muscle over prostate.


Subject(s)
Bridged-Ring Compounds/pharmacology , Hydantoins/pharmacology , Muscle, Skeletal/drug effects , Muscular Atrophy/drug therapy , Receptors, Androgen/metabolism , Administration, Oral , Animals , Breast Neoplasms/drug therapy , Bridged-Ring Compounds/chemical synthesis , Bridged-Ring Compounds/chemistry , Cells, Cultured , Dihydrotestosterone/pharmacology , Humans , Hydantoins/administration & dosage , Hydantoins/chemical synthesis , Hydantoins/chemistry , Luciferases/metabolism , Male , Mice , Muscle, Skeletal/growth & development , Myoblasts/drug effects , Rats , Transcriptional Activation
16.
Curr Opin Investig Drugs ; 5(11): 1153-7, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15573865

ABSTRACT

Retinoids, modulators of retinoic acid receptors (RARs), have been studied for over 20 years as potential therapeutic agents for rheumatoid arthritis (RA). Early successes at the in vitro and in vivo levels were overshadowed by disappointing clinical trials that yielded poor efficacy and unacceptable side effects. A greater understanding of retinoid biology has led to the development of many synthetic retinoids that selectively modulate the RAR isotypes. RAR selective retinoids have a high potential for improved pharmacology with reduced toxicity, thereby renewing interest for the use of retinoids in RA.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Receptors, Retinoic Acid/drug effects , Clinical Trials as Topic , Humans , Matrix Metalloproteinase Inhibitors , Receptors, Retinoic Acid/agonists , Receptors, Retinoic Acid/antagonists & inhibitors , Retinoids/therapeutic use
17.
J Cell Biochem ; 88(6): 1273-91, 2003 Apr 15.
Article in English | MEDLINE | ID: mdl-12647309

ABSTRACT

Several members of the fibroblast growth factor (FGF) family lack signal peptide (SP) sequences and are present only in trace amounts outside the cell. However, these proteins contain nuclear localization signals (NLS) and accumulate in the cell nucleus. Our studies have shown that full length FGF receptor 1 (FGFR1) accumulates within the nuclear interior in parallel with FGF-2. We tested the hypothesis that an atypical transmembrane domain (TM) plays a role in FGFR1 trafficking into the nuclear interior. With FGFR1 destined for constitutive fusion with the plasma membrane due to its SP, how the receptor may enter the nucleus is unclear. Sequence analysis identified that FGFR1 has an atypical TM containing short stretches of hydrophobic amino acids (a.a.) interrupted by polar a.a. The beta-sheet is the predicted conformation of the FGFR1 TM, in contrast to the alpha-helical conformation of other single TM tyrosine kinase receptors, including FGFR4. Receptor trafficking in live cells was studied by confocal microscopy via C-terminal FGFR1 fusions to enhanced green fluorescent protein (EGFP) and confirmed by subcellular fractionation and Western immunoblotting. Nuclear entry of FGFR1-EGFP was independent of karyokinessis, and was observed in rapidly proliferating human TE671 cells, in slower proliferating glioma SF763 and post-mitotic bovine adrenal medullary cells (BAMC). In contrast, a chimeric FGFR1/R4-EGFP, where the TM of FGFR1 was replaced with that of FGFR4, was associated with membranes (golgi-ER, plasma, and nuclear), but was absent from the nucleus and cytosol. FGFR1delta-EGFP mutants, with hydrophobic TM a.a. replaced with polar a.a., showed reduced association with membranes and increased cytosolic/nuclear accumulation with an increase in TM hydrophilicity. FGFR1(TM-)-EGFP (TM deleted), was detected in the golgi-ER vesicles, cytosol, and nuclear interior; thus demonstrating that the FGFR1 TM does not function as a NLS. To test whether cytosolic FGFR1 provides a source of nuclear FGFR1, cells were transfected with FGFR1(SP-) (SP was deleted), resulting in cytosolic, non-membrane, protein accumulation in the cytosol and the cell nucleus. Our results indicate that an unstable association with cellular membranes is responsible for the release of FGFR1 into the cytosol and cytosolic FGFR1 constitutes the source of the nuclear receptor.


Subject(s)
Cell Nucleus/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Active Transport, Cell Nucleus/physiology , Amino Acid Sequence , Base Sequence , Cell Line , Cell Membrane/chemistry , Cells, Cultured , Cytoplasm/metabolism , Fibroblast Growth Factors/biosynthesis , Fibroblast Growth Factors/metabolism , Humans , Intracellular Membranes/chemistry , Molecular Sequence Data , Protein Sorting Signals/physiology , Protein Structure, Tertiary , Receptor Protein-Tyrosine Kinases/analysis , Receptor Protein-Tyrosine Kinases/chemistry , Receptor, Fibroblast Growth Factor, Type 1 , Receptors, Fibroblast Growth Factor/analysis , Receptors, Fibroblast Growth Factor/chemistry , Sequence Analysis, DNA
18.
J Rheumatol ; 30(2): 355-63, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12563696

ABSTRACT

OBJECTIVE: To investigate the usefulness of a novel retinoic acid receptor (RAR) antagonist (BMS-189453) in animal models of arthritis. METHODS: BMS-189453 was tested in HIG-82 rabbit synovial fibroblasts to determine its ability to repress collagenase (matrix metalloproteinase-1, MMP-1) mRNA expression in vitro. Cells were stimulated with phorbol myristate acetate or interleukin 1 beta and mRNA quantified by slot-blot analysis. In vivo, BMS-189453 was evaluated in 2 animal models of arthritis: collagen induced arthritis (CIA) in mice and streptococcal cell wall induced arthritis (SCWA) in rats. Clinical scores for arthritis were recorded weekly. At the end of each study, limbs were evaluated histologically. In CIA, these results were correlated with mRNA levels for collagenase-3 (MMP-13) and stromelysin-1 (MMP-3) as determined by Northern blot. RESULTS: BMS-189453 reduced MMP-1 expression in HIG-82 synovial fibroblasts in culture. BMS-189453 treatment blocked the clinical progression of arthritis beyond soft tissue inflammation in the CIA model. In the SCWA model, BMS-189453 treatment resulted in significantly reduced swelling with no notable progression to joint distortion/destruction. Histological evaluation of the joints from animals in both models confirmed this result. Analysis of mRNA from the CIA paws showed that BMS-189453 prevented the overexpression of MMP-13 and MMP-3 in arthritic joints. CONCLUSION: Improvement in clinical and histologic variables in 2 separate animal models, along with simultaneous reduction in MMP expression in the affected joint, suggests that RAR antagonists such as BMS-189453 may be useful as agents to treat rheumatoid arthritis and for determining the role of MMP in disease progression. This is the first study to show the clinical potential of RAR antagonists in arthritis.


Subject(s)
Arthritis, Experimental/drug therapy , Retinoids/antagonists & inhibitors , Retinoids/pharmacology , Animals , Arthritis, Experimental/pathology , Carcinogens/pharmacology , Collagenases/genetics , Disease Models, Animal , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Gene Expression Regulation, Enzymologic/drug effects , In Vitro Techniques , Interleukin-1/pharmacology , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 13 , Matrix Metalloproteinase 3/genetics , Mice , Mice, Inbred DBA , Rabbits , Rats , Rats, Inbred Lew , Receptors, Retinoic Acid/antagonists & inhibitors , Retinoids/chemistry , Synovial Membrane/cytology , Tetradecanoylphorbol Acetate/pharmacology
19.
Chem Commun (Camb) ; (7): 784-5, 2002 Apr 07.
Article in English | MEDLINE | ID: mdl-12119722

ABSTRACT

Iridium complexes with fluorene-modified phenylpyridine ligands are resistant to crystallization and can be used in the fabrication of single layer light emitting diodes.

20.
J Am Chem Soc ; 124(8): 1736-43, 2002 Feb 27.
Article in English | MEDLINE | ID: mdl-11853451

ABSTRACT

Measurements of ultrafast fluorescence anisotropy decay in model branched dendritic molecules of different symmetry are reported. These molecules contain the fundamental branching center units of larger dendrimer macromolecules with either three (C(3))- or four (T(d), tetrahedral)-fold symmetry. The anisotropy for a tetrahedral system is found to decay on a subpicosecond time scale (880 fs). This decay can be qualitatively explained by Förster-type incoherent energy migration between chromophores. Alternatively, for a nitrogen-centered trimer system, the fluorescence anisotropy decay time (35 fs) is found to be much shorter than that of the tetramers, and the decay cannot be attributed to an incoherent hopping mechanism. In this case, a coherent interchromophore energy transport mechanism should be considered. The mechanism of the ultrafast energy migration process in the branched systems is interpreted by use of a phenomenological quantum mechanical model, which examines the two extreme cases of incoherent and coherent interactions.

SELECTION OF CITATIONS
SEARCH DETAIL