Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Chem Inf Model ; 63(24): 7744-7754, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38055931

ABSTRACT

The article shows that the definition of the HOMA index of geometrical aromaticity satisfies the axioms of a similarity function between the examined and benzene ring. Consequently, for purely mathematical reasons, the index works exceptionally well as an index of aromaticity: it expresses a geometric similarity to the archetypal aromatic benzene. Thus, if the molecule is geometrically similar to benzene, then it is also chemically similar, and therefore, it is aromatic. However, the similarity property legitimizes using the HOMA-like indices to express similarity to molecules other than benzene, whether cyclic or linear and existing or hypothetical. The paper demonstrates an example of HOMA-similarity to cyclohexane, which expresses a (relaxed)-saturicity property not accompanied by strong structural strains or steric hindrances. Further, it is also shown that the HOMA index can evaluate the properties of whole molecules, such as 25 unbranched catacondensed isomers of hexacene. The index exhibits a significant quadratic correlation with the total energy differences of planar isomers from which the nonplanar ones deviate. Moreover, the HOMA index of hexacene isomers significantly correlates with the Kekulé count connected to the resonance energy in the Hückel approximation. As a result, the study shows that the HOMA index can be used not only for aromaticity analyses but also as a general chemical descriptor applicable to rings, chains, composed molecular moieties, or even whole molecules.


Subject(s)
Benzene , Benzene/chemistry
2.
Molecules ; 28(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37570653

ABSTRACT

The structure, energetics, and aromaticity of c.a. 100 constitutional isomers and tautomers of pyrido[m,n]diazepines (m = 1, 2; n = 2, 3, 4, 5; m ≠ n) were studied at the B3LYP/cc-pVTZ level. The pyrido[1,3]diazepines appear the most, while pyrido[2,4]diazepines are the least stable (ca. 26 kcal/mol). In the pyrido[1,n]diazepine group (n = 2-5), the [1,5] isomers are higher in energy by ca. 4.5 kcal/mol and the [1,4] ones by ca. 7 kcal/mol, and the pyrido[1,2]diazepines are the least stable (ca. 20 kcal/mol). All the most stable pyrido[1,n]diazepines have N-atoms near the ring's junction bond but on opposite sites. The most stable [2,n]-forms are also those with the pyridine ring N6-atom near the junction bond. Surprisingly, for the [1,2]-, [1,3]-, and [1,4]-isomer condensation types of pyridine and diazepine rings, the same N9 > N7 > N6 > N8 stability pattern obeys. The stability remains similar in a water medium simulated with the Polarizable Continuum Model of the solvent and is conserved when calculated using the CAM-B3LYP or BHandHlyp functionals. The ring's aromaticity in the pyridine[m,n]diazepines was established based on the integral INICS index resulting from the NICSzz-scan curves' integration. The integral INICS index is physically justified through its relation to the ringcurrent as demonstrated by Berger, R.J.F., et al. Phys. Chem. Chem. Phys. 2022, 24, 624. The six-membered pyrido rings have negative INICSZZ indices and can be aromatic only if they are not protonated at the N-atom. All protonated pyrido and seven-membered rings exhibit meaningful positive INICSZZ values and can be assigned as antiaromatic. However, some non-protonated pyrido rings also have substantial positive INICSZZ indices and are antiaromatic. A weak linear correlation (R2 = 0.72) between the INICSZZ values of the pyridine I(6) and diazepine I(7) rings exists and is a consequence of the communication between the π-electron systems of the two rings. The juxtaposition of the INICS descriptor of the six- and seven-membered rings and diverse electron density parameters at the Ring Critical Points (RCP) revealed good correlations only with the Electrostatic Potentials from the electrons and nuclei (ESPe and ESPn). The relationships with other RCP parameters like electron density and its Laplacian, total energy, and the Hamiltonian form of kinetic energy density were split into two parts: one nearly constant for the six-membered rings and one linearly correlating for the seven-membered rings. Thus, most of the electron density parameters at the RCP of the six-membered rings of pyridodiazepines practically do not change with the diazepine type and the labile proton position. In contrast, those of the seven-membered rings display aromaticity changes in the antiaromatic diazepine with its ring structural modifications.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122089, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36436264

ABSTRACT

The UV-vis and ECD spectroelectrochemistry (SEC) of a chiral binaphthalenylamine derivative of the N-butyl naphthalenediimide (NDIB-NH2) enantiomers were applied to measure UV-vis and ECD spectra of NDIB-NH2 radicals and dianion formed in the reduction and oxidation processes observed in cyclic voltammetry (CV). The CV curves and EPR spectroelectrochemistry enabled us to establish conditions at which a radical-anion [NDIB-NH2]̇.-, a dianion [NDIB-NH2]2-, and a radical-cation [NDIB-NH2]̇.+ are formed. The DFT restricted open-shell CAM-B3LYP-D3/def2TZVP/PCM calculations demonstrated that in the radical-anion [NDIB-NH2]̇.-, spin is spread over the NDI system while in the radical-cation [NDIB-NH2]̇+ it is spread over the aminonaphthalene moiety. The UV-vis spectra of radical-anion and dianion show the most significant changes in the 400-800 nm range. In that range, the ECD spectra varied with the change of electrode potential more than the UV-vis did and enabled the identification of a new ECD band of [NDIB-NH2]̇.- at ca. 400 nm hidden in the background in the UV spectra at -1000 mV. A broad structured ECD pattern with a maximum at ca. 530 nm was observed for [NDIB-NH2]̇.- (-1000 mV), while a single smooth ECD band of [NDIB-NH2]2- was located at 520 nm (-1750 mV). For the first time, an isosbestic point (455 nm) was found in ECD spectroelectrochemical measurements for the radical-cation [NDIB-NH2]̇.+ in equilibrium with the NDIB-NH2 neutral form. The TD-DFT CAM-B3LYP-D3/6-31G** calculations combined with the hybrid (explicit combined with implicit) solvation model fairly well reproduced the UV-vis and ECD SEC of neutral and redox forms of NDIB-NH2 but the ECD spectrum of [NDIB-NH2]̇.+ above 390 nm.


Subject(s)
Density Functional Theory , Oxidation-Reduction , Anions , Cations
4.
J Phys Chem A ; 126(22): 3433-3444, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35617165

ABSTRACT

The NICS aromaticity indices of the rings in flexible phenylalanine (Phe), tryptophan (Trp), tyrosine (Tyr), and histidine (His) chiral molecules were analyzed. These molecules have several dozens of conformers, and their rings are slightly non-planar. Therefore, the population-averaged NICSpav index was defined, and the NICS scans had to be performed with respect to planes found by the least-squares routine. A rule differentiating an obverse and a reverse ring face in aromatic amino acids was formulated. The NICS scan minima corresponding to the obverse and reverse face were unequal, which prompted us to use the term ring face aromaticity/ring face tropicity. It appeared that for Phe, Trp, Tyr, and His, the reverse face has always had higher ring face aromaticity/ring face tropicity than the obverse one. Despite the NICS modifications, uncertainty about the amino acid aromaticity order remained. This motivated us to use the integral INICS index newly proposed by Stanger as well. Then, the following sequence was obtained: Trp(phenyl) > Phe > Trp(pyrrole) > His > Tyr. The juxtaposition of the INICS indices of amino acids with that of some model rings revealed a fair transferability of the values. Finally, analysis of the substituent effect on INICS demonstrated that the aromaticity of Tyr is the lowest due to the strength of the OH group π-electron-donating effect able to perturb enough the ring charge distribution and its magnetic aromaticity. The NICS calculations were executed using the ARONICS program written within the project.


Subject(s)
Amino Acids, Aromatic , Amino Acids , Amino Acids/chemistry , Phenylalanine/chemistry , Tryptophan/chemistry , Tyrosine/chemistry
5.
Int J Mol Sci ; 22(2)2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33435233

ABSTRACT

The azide radical (N3●) is one of the most important one-electron oxidants used extensively in radiation chemistry studies involving molecules of biological significance. Generally, it was assumed that N3● reacts in aqueous solutions only by electron transfer. However, there were several reports indicating the possibility of N3● addition in aqueous solutions to organic compounds containing double bonds. The main purpose of this study was to find an experimental approach that allows a clear assignment of the nature of obtained products either to its one-electron oxidation or its addition products. Radiolysis of water provides a convenient source of one-electron oxidizing radicals characterized by a very broad range of reduction potentials. Two inorganic radicals (SO4●-, CO3●-) and Tl2+ ions with the reduction potentials higher, and one radical (SCN)2●- with the reduction potential slightly lower than the reduction potential of N3● were selected as dominant electron-acceptors. Transient absorption spectra formed in their reactions with a series of quinoxalin-2-one derivatives were confronted with absorption spectra formed from reactions of N3● with the same series of compounds. Cases, in which the absorption spectra formed in reactions involving N3● differ from the absorption spectra formed in the reactions involving other one-electron oxidants, strongly indicate that N3● is involved in the other reaction channel such as addition to double bonds. Moreover, it was shown that high-rate constants of reactions of N3● with quinoxalin-2-ones do not ultimately prove that they are electron transfer reactions. The optimized structures of the radical cations (7-R-3-MeQ)●+, radicals (7-R-3-MeQ)● and N3● adducts at the C2 carbon atom in pyrazine moiety and their absorption spectra are reasonably well reproduced by density functional theory quantum mechanics calculations employing the ωB97XD functional combined with the Dunning's aug-cc-pVTZ correlation-consistent polarized basis sets augmented with diffuse functions.


Subject(s)
Quinoxalines/chemistry , Azides/chemistry , Electrons , Free Radicals/chemistry , Water/chemistry
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 231: 117791, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31992498

ABSTRACT

Endohedral structures with La0 or La3+ encapsulated in chiral (1,16)C58N2 or achiral (1,4)C58N2 diazafullerenes were studied at the B3LYP/G-31G*/SDD level. Two stable locations of La0 and La3+ are possible in each cage but only with La0@(1,16)C58N2 can the two isomers coexist. We found that an AIM determined hapticity of the endohedral species selectively differentiates the systems. We predict that there will always exist IR and Raman bands which allow for them to be identified in the presence of the parent cage. For the La0@(1,16) C58N2 molecules and the parent diazafullerene, the Raman spectra are likely to reveal a pre-resonance effect even at 785 nm and it seems possible to selectively excite only one isomer. The calculated electronic spectra suggested a chance to determine the less populated diazafullerene in the presence of the more populated one, be it chiral or achiral. For the chiral endohedral isomers, the calculated VCD spectra are quite dissimilar and the two endohedral isomers and the parent heterofullerene seem to be easily detected. Eventually, we defined the endohedral isomerism as follows: The endohedral isomerism is the phenomenon whereby an internal individuum captured in a cage can occupy more than one stable position without changing the cage connectivity.

7.
Article in English | MEDLINE | ID: mdl-25978013

ABSTRACT

Global coordinates have been found to be useful in the potential energy distribution (PED) analyses of the following large molecules: [13]-acene and [33]-helicene. The global coordinate is defined based on much distanced fragments of the analysed molecule, whereas so far, the coordinates used in the analysis were based on stretchings, bendings, or torsions of the adjacent atoms. It has been shown that the PED analyses performed using the global coordinate and the classical ones can lead to exactly the same PED contributions. The global coordinates may significantly improve the facility of the analysis of the vibrational spectra of large molecules.

8.
J Chem Inf Model ; 52(6): 1462-79, 2012 Jun 25.
Article in English | MEDLINE | ID: mdl-22587304

ABSTRACT

To measure molecular chirality, the molecule is treated as a finite set of points in the Euclidean R(3) space supplemented by k properties, p(1)((i)), p(2)((i)), ..., p(k)((i)) assigned to the ith atom, which constitute a point in the Property P(k) space. Chirality measures are described as the distance between a molecule and its mirror image minimized over all its arbitrary orientation-preserving isometries in the R(3) × P(k) Cartesian product space. Following this formalism, different chirality measures can be estimated by taking into consideration different sets of atomic properties. Here, for α-amino acid zwitterionic structures taken from the Cambridge Structural Database and for all 1684 neutral conformers of 19 biogenic α-amino acid molecules, except glycine and cystine, found at the B3LYP/6-31G** level, chirality measures have been calculated by a CHIMEA program written in this project. It is demonstrated that there is a significant correlation between the measures determined for the α-amino acid zwitterions in crystals and the neutral forms in the gas phase. Performance of the studied chirality measures with changes of the basis set and computation method was also checked. An exemplary quantitative structure­activity relationship (QSAR) application of the chirality measures was presented by an introductory model for the benchmark Cramer data set of steroidal ligands of the sex-hormone binding globulin.


Subject(s)
Amino Acids/chemistry , Quantitative Structure-Activity Relationship , Stereoisomerism
9.
J Phys Chem A ; 116(1): 631-43, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-22077444

ABSTRACT

The stability of all 23 C(58)N(2) and C(58)B(2) heterofullerenes in the singlet and triplet states was determined at the B3LYP/6-31G** level. In equilibrium mixture the achiral (1,4) C(58)N(2) isomer would be populated in ca. 95.8%, the chiral (1,16) one in ca. 3.3%, and the achiral (1,4) C(58)B(2) in 100%, whereas all triplet state isomers are less stable. Fourteen out of 23 C(58)X(2) are chiral. Four different chirality measures were calculated by our own CHIMEA program: pure geometrical, labeled, mass, and charge. Intercorrelations between the measures for all chiral compounds indicate that the pure geometrical chirality measure is unstable and should not be used in QSAR predictions of the other molecular properties, while the labeled and mass-weighted ones are promising QSAR descriptors. For each chiral C(58)N(2) molecule, some very strong VCD bands, of intensity comparable with that in the IR spectra, can serve in identification and characterization of the isomers.


Subject(s)
Fullerenes/chemistry , Models, Molecular , Circular Dichroism , Quantitative Structure-Activity Relationship , Quantum Theory , Stereoisomerism , Thermodynamics
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 66(4-5): 1030-41, 2007 Apr.
Article in English | MEDLINE | ID: mdl-16872877

ABSTRACT

Imines (ketimines and azomethines) derived from p-dibenzoylbenzene (DB) and terephthalic aldehyde (TA) and two aromatic amines: aniline and 2,6-dimethylaniline have been investigated. Compounds were synthesized via condensation of amines with carbonyl monomers in DMA or amine solution. When using DMA as a solvent, azomethines with high yields were obtained. On the other hand, the amines used as a monomers served also as an effective solvent for the synthesis of the ketanils. This different reactivity of the aldehyde and ketone groups in DMA and in amine depends on the dehydration mechanism being dominated by a kinetic process or thermodynamic one. On the basis of FTIR, 13C and 1H NMR, UV-vis spectra, thermal characteristic and theoretical calculations conclusions are drawn regarding the similarities and differences between azomethines and ketimines.


Subject(s)
Azo Compounds/chemistry , Azo Compounds/chemical synthesis , Imines/chemistry , Imines/chemical synthesis , Thiosemicarbazones/chemistry , Thiosemicarbazones/chemical synthesis , Alanine/analogs & derivatives , Alanine/chemistry , Azo Compounds/analysis , Calorimetry, Differential Scanning , Cresols/chemistry , Imines/analysis , Isomerism , Magnetic Resonance Spectroscopy , Models, Chemical , Molecular Conformation , Solutions , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Thiosemicarbazones/analysis , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL