Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microbes Environ ; 36(3)2021.
Article in English | MEDLINE | ID: mdl-34470944

ABSTRACT

Root nodule symbiosis between legumes and rhizobia involves nitric oxide (NO) regulation by both the host plant and symbiotic rhizobia. However, the mechanisms by which the rhizobial control of NO affects root nodule symbiosis in Lotus japonicus are unknown. Therefore, we herein investigated the effects of enhanced NO removal by Mesorhizobium loti on symbiosis with L. japonicus. The hmp gene, which in Sinorhizobium meliloti encodes a flavohemoglobin involved in NO detoxification, was introduced into M. loti to generate a transconjugant with enhanced NO removal. The symbiotic phenotype of the transconjugant with L. japonicus was examined. The transconjugant showed delayed infection and higher nitrogenase activity in mature nodules than the wild type, whereas nodule senescence was normal. This result is in contrast to previous findings showing that enhanced NO removal in L. japonicus by class 1 phytoglobin affected nodule senescence. To evaluate differences in NO detoxification between M. loti and L. japonicus, NO localization in nodules was investigated. The enhanced expression of class 1 phytoglobin in L. japonicus reduced the amount of NO not only in infected cells, but also in vascular bundles, whereas that of hmp in M. loti reduced the amount of NO in infected cells only. This difference suggests that NO detoxification by M. loti exerts different effects in symbiosis than that by L. japonicus.


Subject(s)
Lotus/metabolism , Mesorhizobium/metabolism , Nitric Oxide/metabolism , Root Nodules, Plant/microbiology , Symbiosis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hemeproteins/genetics , Hemeproteins/metabolism , Lotus/microbiology , Mesorhizobium/genetics , Root Nodules, Plant/metabolism , Sinorhizobium meliloti/genetics
2.
Antioxidants (Basel) ; 9(2)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32046218

ABSTRACT

Reactive sulfur species (RSS) function as strong antioxidants and are involved in various biological responses in animals and bacteria. Few studies; however, have examined RSS in plants. In the present study, we clarified that RSS are involved in root nodule symbiosis in the model legume Lotus japonicus. Polysulfides, a type of RSS, were detected in the roots by using a sulfane sulfur-specific fluorescent probe, SSP4. Supplying the sulfane sulfur donor Na2S3 to the roots increased the amounts of both polysulfides and hydrogen sulfide (H2S) in the roots and simultaneously decreased the amounts of nitric oxide (NO) and reactive oxygen species (ROS). RSS were also detected in infection threads in the root hairs and in infected cells of nodules. Supplying the sulfane sulfur donor significantly increased the numbers of infection threads and nodules. When nodules were immersed in the sulfane sulfur donor, their nitrogenase activity was significantly reduced, without significant changes in the amounts of NO, ROS, and H2S. These results suggest that polysulfides interact with signal molecules such as NO, ROS, and H2S in root nodule symbiosis in L. japonicus. SSP4 and Na2S3 are useful tools for study of RSS in plants.

3.
Antioxidants (Basel) ; 8(7)2019 Jul 04.
Article in English | MEDLINE | ID: mdl-31277471

ABSTRACT

Flooding limits biomass production in agriculture. Leguminous plants, important agricultural crops, use atmospheric dinitrogen gas as nitrogen nutrition by symbiotic nitrogen fixation with rhizobia, but this root-nodule symbiosis is sometimes broken down by flooding of the root system. In this study, we analyzed the effect of flooding on the symbiotic system of transgenic Lotus japonicus lines which overexpressed class 1 phytoglobin (Glb1) of L. japonicus (LjGlb1-1) or ectopically expressed that of Alnus firma (AfGlb1). In the roots of wild-type plants, flooding increased nitric oxide (NO) level and expression of senescence-related genes and decreased nitrogenase activity; in the roots of transgenic lines, these effects were absent or less pronounced. The decrease of chlorophyll content in leaves and the increase of reactive oxygen species (ROS) in roots and leaves caused by flooding were also suppressed in these lines. These results suggest that increased levels of Glb1 help maintain nodule symbiosis under flooding by scavenging NO and controlling ROS.

4.
Microbes Environ ; 34(2): 155-160, 2019 Jun 27.
Article in English | MEDLINE | ID: mdl-30905896

ABSTRACT

Aphids have a mutualistic relationship with the bacterial endosymbiont Buchnera aphidicola. We previously reported seven cysteine-rich peptides in the pea aphid Acyrthosiphon pisum and named them Bacteriocyte-specific Cysteine-Rich (BCR) peptides; these peptides are exclusively expressed in bacteriocytes, special aphid cells that harbor symbionts. Similar symbiotic organ-specific cysteine-rich peptides identified in the root nodules of leguminous plants are named Nodule-specific Cysteine-Rich (NCR) peptides. NCR peptides target rhizobia in the nodules and are essential for symbiotic nitrogen fixation. A BacA (membrane protein) mutant of Sinorhizobium is sensitive to NCR peptides and is unable to establish symbiosis. Based on the structural and expressional similarities between BCR peptides and NCR peptides, we hypothesized that aphid BCR peptides exhibit antimicrobial activity, similar to some NCR peptides. We herein synthesized BCR peptides and investigated their antimicrobial activities and effects on the bacterial membrane of Escherichia coli. The peptides BCR1, BCR3, BCR5, and BCR8 exhibited antimicrobial activities with increased membrane permeability. An sbmA mutant of E. coli, a homolog of bacA of S. meliloti, was more sensitive to BCR peptides than the wild type. Our results suggest that BCR peptides have properties that may be required to control the endosymbiont, similar to NCR peptides in legumes.


Subject(s)
Anti-Infective Agents/pharmacology , Aphids/metabolism , Cysteine/chemistry , Insect Proteins/pharmacology , Peptides/pharmacology , Animals , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Aphids/microbiology , Buchnera/physiology , Cell Membrane Permeability/drug effects , Cell Membrane Permeability/genetics , Escherichia coli/cytology , Escherichia coli/drug effects , Escherichia coli/genetics , Insect Proteins/chemical synthesis , Insect Proteins/chemistry , Mutation , Peptides/chemical synthesis , Peptides/chemistry , Sinorhizobium meliloti/drug effects , Sinorhizobium meliloti/genetics , Symbiosis
5.
Plant Cell Physiol ; 60(4): 816-825, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30597068

ABSTRACT

The class 1 phytoglobin, LjGlb1-1, is expressed in various tissues of the model legume Lotus japonicus, where it may play multiple functions by interacting with nitric oxide (NO). One of such functions is the onset of a proper symbiosis with Mesorhizobium loti resulting in the formation of actively N2-fixing nodules. Stable overexpression lines (Ox1 and Ox2) of LjGlb1-1 were generated and phenotyped. Both Ox lines showed reduced NO levels in roots and enhanced nitrogenase activity in mature and senescent nodules relative to the wild-type (WT). Physiological and cytological observations indicated that overexpression of LjGlb1-1 delayed nodule senescence. The application to WT nodules of the NO donor S-nitroso-N-acetyl-dl-penicillamine (SNAP) or the phytohormones abscisic acid (ABA) and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) repressed nitrogenase activity, induced the expression of three senescence-associated genes and caused cytological changes evidencing nodule senescence. These effects were almost completely reverted by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. Our results reveal that overexpression of LjGlb1-1 improves the activity of mature nodules and delays nodule senescence in the L.japonicus-M.loti symbiosis. These beneficial effects are probably mediated by the participation of LjGlb1-1 in controlling the concentration of NO that may be produced downstream in the phytohormone signaling pathway in nodules.


Subject(s)
Lotus/metabolism , Nitric Oxide/metabolism , Amino Acids, Cyclic/metabolism , Gene Expression Regulation, Plant , Hemoglobins/metabolism , Nitrogen Fixation/physiology , Plant Roots/metabolism , Root Nodules, Plant/metabolism , Root Nodules, Plant/physiology
6.
Carbohydr Res ; 445: 44-50, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28399430

ABSTRACT

Mesorhizobium loti is a member of rhizobia and establishes nitrogen-fixing symbioses with several Lotus species. Recently, we reported that M. loti MAFF 303099 bacterial cells and their lipopolysaccharide (LPS) preparations are involved in the beginning of the symbiotic process by inducing transient nitric oxide (NO) production in the roots of L. japonicus. We subsequently found that both the polysaccharide (PS) part and the lipid A moiety in LPS are responsible for the NO induction. In this study, we elucidated the chemical structure of M. loti O-polysaccharide (OPS) in PS. PS was prepared by mild acid hydrolysis of M. loti LPS followed by gel filtration chromatography. OPS was subjected to hydrazine treatment to obtain deacylated PS (dPS). Chemical composition analysis, ethylation analysis, and NMR spectra revealed the chemical structure of the M. loti OPS backbone in dPS to be →2)-α-l-6dTalp-(1 â†’ 3)-α-l-6dTalp-(1 â†’ 2)-α-l-Rhap-(1 â†’ 2)-α-l-6dTalp-(1 â†’ 3)-α-l-6dTalp-(1 â†’ 3)-α-l-Rhap-(1→.


Subject(s)
Mesorhizobium/metabolism , Nitric Oxide/biosynthesis , O Antigens/chemistry , Carbohydrate Sequence , Plant Roots/metabolism
7.
J Exp Bot ; 67(17): 5275-83, 2016 09.
Article in English | MEDLINE | ID: mdl-27443280

ABSTRACT

Leghemoglobins transport and deliver O2 to the symbiosomes inside legume nodules and are essential for nitrogen fixation. However, the roles of other hemoglobins (Hbs) in the rhizobia-legume symbiosis are unclear. Several Lotus japonicus mutants affecting LjGlb1-1, a non-symbiotic class 1 Hb, have been used to study the function of this protein in symbiosis. Two TILLING alleles with single amino acid substitutions (A102V and E127K) and a LORE1 null allele with a retrotransposon insertion in the 5'-untranslated region (96642) were selected for phenotyping nodulation. Plants of all three mutant lines showed a decrease in long infection threads and nodules, and an increase in incipient infection threads. About 4h after inoculation, the roots of mutant plants exhibited a greater transient accumulation of nitric oxide (NO) than did the wild-type roots; nevertheless, in vitro NO dioxygenase activities of the wild-type, A102V, and E127K proteins were similar, suggesting that the mutated proteins are not fully functional in vivo The expression of LjGlb1-1, but not of the other class 1 Hb of L. japonicus (LjGlb1-2), was affected during infection of wild-type roots, further supporting a specific role for LjGlb1-1. In conclusion, the LjGlb1-1 mutants reveal that this protein is required during rhizobial infection and regulates NO levels.


Subject(s)
Hemoglobins/physiology , Lotus/physiology , Mesorhizobium/physiology , Nitric Oxide/metabolism , Plant Proteins/physiology , Plant Root Nodulation/physiology , Hemoglobins/metabolism , Lotus/growth & development , Lotus/metabolism , Lotus/microbiology , Mesorhizobium/metabolism , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/microbiology , Plant Roots/physiology , Real-Time Polymerase Chain Reaction , Symbiosis/physiology
8.
J Plant Res ; 129(4): 749-758, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26951113

ABSTRACT

Phytohormone abscisic acid (ABA) inhibits root nodule formation of leguminous plants. LjGlu1, a ß-1,3-glucanase gene of Lotus japonicus, has been identified as an ABA responsive gene. RNA interference of LjGlu1 increased nodule number. This suggests that LjGlu1 is involved in the regulation of nodule formation. Host legumes control nodule number by autoregulation of nodulation (AON), in which the presence of existing root nodules inhibits further nodulation. For further characterization of LjGlu1, we focused on the expression of LjGlu1 in relation to AON. In a split-root system, LjGlu1 expression peaked when AON was fully induced. Hairy roots transformed with LjCLE-RS1, a gene that induces AON, were generated. Expression of LjGlu1 was greater in the transgenic roots than in untransformed roots. LjGlu1 was not induced in a hypernodulating mutant inoculated with Mesorhizobium loti. These results suggest that the expression of LjGlu1 is involved in the system of AON. However, neither hypernodulation nor enlarged nodulation zone was observed on the transgenic hairy roots carrying LjGlu1-RNAi, suggesting that LjGlu1 is not a key player of AON. Recombinant LjGlu1 showed endo-ß-1,3-glucanase activity. LjGlu1-mOrange fusion protein suggested that LjGlu1 associated with M. loti on the root hairs. Exogenous ß-1,3-glucanase inhibited infection thread formation by both the wild type and the mutant, and nodule numbers were reduced. These results suggest that LjGlu1 is expressed in response to M. loti infection and functions outside root tissues, resulting in the inhibition of infection.


Subject(s)
Gene Expression Regulation, Plant , Glucan 1,3-beta-Glucosidase/genetics , Lotus/enzymology , Lotus/genetics , Glucan 1,3-beta-Glucosidase/metabolism , Lotus/microbiology , Mesorhizobium/physiology , Mutation/genetics , Plant Root Nodulation/genetics , Plants, Genetically Modified , RNA Interference , Recombinant Proteins/metabolism , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology , Transformation, Genetic
9.
Plant Cell Physiol ; 45(7): 914-22, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15295075

ABSTRACT

The effects of the phytohormone abscisic acid (ABA) on plant growth and root nodule formation were analyzed in Trifolium repense (white clover) and Lotus japonicus, which form indeterminate and determinate nodules, respectively. In T. repense, although the number of nodules formed after inoculation with Rhizobium leguminosarum bv. trifolii strain 4S (wild type) was slightly affected by exogenous ABA, those formed by strain H1(pC4S8), which forms ineffective nodules, were dramatically reduced 28 days after inoculation (DAI). At 14 and 21 DAI, the number of nodules formed with the wild-type strain was decreased by exogenous ABA. In L. japonicus, the number of nodules was also reduced by ABA treatment. Thus, exogenous ABA inhibits root nodule formation after inoculation with rhizobia. Observation of root hair deformation revealed that ABA blocked the step between root hair swelling and curling. When the ABA concentration in plants was decreased by using abamine, a specific inhibitor of 9-cis-epoxycarotenoid dioxygenase, the number of nodules on lateral roots of abamine-treated L. japonicus increased dramatically, indicating that lower-than-normal concentrations of endogenous ABA enhance nodule formation. We hypothesize that the ABA concentration controls the number of root nodules.


Subject(s)
Abscisic Acid/metabolism , Lotus/growth & development , Plant Roots/growth & development , Trifolium/growth & development , Abscisic Acid/pharmacology , Dioxygenases , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Lotus/drug effects , Lotus/metabolism , Oxygenases/antagonists & inhibitors , Oxygenases/metabolism , Plant Proteins , Plant Roots/drug effects , Plant Roots/metabolism , Reaction Time/drug effects , Reaction Time/physiology , Rhizobium leguminosarum/physiology , Symbiosis/drug effects , Symbiosis/physiology , Trifolium/drug effects , Trifolium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL