Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 125: 160-168, 2019 08.
Article in English | MEDLINE | ID: mdl-31121355

ABSTRACT

Bone remodeling of the auditory ossicles and the otic capsule is highly restricted and tightly controlled by the osteoprotegerin (OPG)/receptor activator of nuclear factor kappa-Β ligand (RANKL)/receptor activator of nuclear factor kappa-Β (RANK) system. In these bony structures, a pathological decrease in OPG expression stimulates osteoclast differentiation and excessive resorption followed by accrual of sclerotic bone, ultimately resulting in the development of otosclerosis, a leading cause of deafness in adults. Understanding the signaling pathways involved in maintaining OPG expression in the ear would shed light on the pathophysiology of otosclerosis and other ear bone-related diseases. We and others previously demonstrated that Ca2+ signaling through the L-type CaV1.2 Ca2+ channel positively regulates OPG expression and secretion in long bone osteoblasts and their precursor cells in vitro and in vivo. Whether CaV1.2 regulates OPG expression in ear bones has not been investigated. We drove expression of a gain-of-function CaV1.2 mutant channel (CaV1.2TS) using Col2a1-Cre, which we found to target osteochondral/osteoblast progenitors in the auditory ossicles and the otic capsule. Col2a1-Cre;CaV1.2TS mice displayed osteopetrosis of these bones shown by µCT 3D reconstruction, histological analysis, and lack of bone sculpting, findings similar to phenotypes seen in mice with an osteoclast defect. Consistent with those observations, we found that Col2a1-Cre;CaV1.2TS mutant mice showed reduced osteoclasts in the otic capsule, upregulated mRNA expression of Opg and Opg/Rankl ratio, and increased mRNA expression of osteoblast differentiation marker genes in the otic capsule, suggesting both an anti-catabolic and anabolic effect of CaV1.2TS mutant channel contributed to the observed morphological changes of the ear bones. Further, we found that Col2a1-Cre;CaV1.2TS mice experienced hearing loss and displayed defects of body balance in behavior tests, confirming that the CaV1.2-dependent Ca2+ influx affects bone structure in the ear and consequent hearing and vestibular functions. Together, these data support our hypothesis that Ca2+ influx through CaV1.2TS promotes OPG expression from osteoblasts, thereby affecting bone modeling/remodeling in the auditory ossicles and the otic capsule. These data provide insight into potential pathological mechanisms underlying perturbed OPG expression and otosclerosis.


Subject(s)
Bone and Bones/metabolism , Calcium Channels, L-Type/metabolism , Calcium Signaling/physiology , Ear, Inner/metabolism , Ear, Middle/metabolism , Animals , Bone Diseases/metabolism , Calcium Channels, L-Type/genetics , Ear Ossicles , Female , Male , Mice , Osteoprotegerin/metabolism
2.
Proc Natl Acad Sci U S A ; 106(21): 8543-8, 2009 May 26.
Article in English | MEDLINE | ID: mdl-19423671

ABSTRACT

Pathogenic bacteria have developed extraordinary strategies for invading host cells. The highly conserved type III secretion system (T3SS) provides a regulated conduit between the bacterial and host cytoplasm for delivery of a specific set of bacterial effector proteins that serve to disrupt host signaling and metabolism for the benefit of the bacterium. Remarkably, the inner diameter of the T3SS apparatus requires that effector proteins pass through in at least a partially unfolded form. AvrPto, an effector protein of the plant pathogen Pseudomonas syringae, adopts a helical bundle fold of low stability (DeltaG(F-->U) = 2 kcal/mol at pH 7, 26.6 degrees C) and offers a model system for chaperone-independent secretion. P. syringae effector proteins encounter a pH gradient as they translocate from the bacterial cytoplasm (mildly acidic) into the host cell (neutral). Here, we demonstrate that AvrPto possesses a pH-sensitive folding switch controlled by conserved residue H87 that operates precisely in the pH range expected between the bacterial and host cytoplasm environments. These results provide a mechanism for how a bacterial effector protein employs an intrinsic pH sensor to unfold for translocation via the T3SS and refold once in the host cytoplasm and provide fundamental insights for developing strategies for delivery of engineered therapeutic proteins to target tissues.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Protein Folding , Pseudomonas syringae/chemistry , Pseudomonas syringae/metabolism , Acids , Bacterial Proteins/genetics , Hydrogen-Ion Concentration , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Denaturation , Protein Structure, Tertiary , Pseudomonas syringae/genetics , Temperature , Titrimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...