Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Dis ; 132: 104529, 2019 12.
Article in English | MEDLINE | ID: mdl-31301343

ABSTRACT

A recent report of autosomal-recessive primary isolated dystonia (DYT2 dystonia) identified mutations in HPCA, a gene encoding a neuronal calcium sensor protein, hippocalcin (HPCA), as the cause of this disease. However, how mutant HPCA leads to neuronal dysfunction remains unknown. Using a multidisciplinary approach, we demonstrated the failure of dystonic N75K HPCA mutant to decode short bursts of action potentials and theta rhythms in hippocampal neurons by its Ca2+-dependent translocation to the plasma membrane. This translocation suppresses neuronal activity via slow afterhyperpolarization (sAHP) and we found that the N75K mutant could not control sAHP during physiologically relevant neuronal activation. Simulations based on the obtained experimental results directly demonstrated an increased excitability in neurons expressing N75K mutant instead of wild type (WT) HPCA. In conclusion, our study identifies sAHP as a downstream cellular target perturbed by N75K mutation in DYT2 dystonia, demonstrates its impact on neuronal excitability, and suggests a potential therapeutic strategy to efficiently treat DYT2.


Subject(s)
Action Potentials/physiology , Calcium Signaling/physiology , Dystonia Musculorum Deformans/genetics , Dystonia Musculorum Deformans/physiopathology , Hippocalcin/genetics , Mutation/physiology , Animals , Animals, Newborn , Cells, Cultured , Dystonia Musculorum Deformans/metabolism , Female , HEK293 Cells , Hippocalcin/metabolism , Hippocampus/cytology , Hippocampus/physiology , Humans , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...