Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34948266

ABSTRACT

Auger electron-emitters increasingly attract attention as potential radionuclides for molecular radionuclide therapy in oncology. The radionuclide technetium-99m is widely used for imaging; however, its potential as a therapeutic radionuclide has not yet been fully assessed. We used MDA-MB-231 breast cancer cells engineered to express the human sodium iodide symporter-green fluorescent protein fusion reporter (hNIS-GFP; MDA-MB-231.hNIS-GFP) as a model for controlled cellular radionuclide uptake. Uptake, efflux, and subcellular location of the NIS radiotracer [99mTc]TcO4- were characterised to calculate the nuclear-absorbed dose using Medical Internal Radiation Dose formalism. Radiotoxicity was determined using clonogenic and γ-H2AX assays. The daughter radionuclide technetium-99 or external beam irradiation therapy (EBRT) served as controls. [99mTc]TcO4- in vivo biodistribution in MDA-MB-231.hNIS-GFP tumour-bearing mice was determined by imaging and complemented by ex vivo tissue radioactivity analysis. [99mTc]TcO4- resulted in substantial DNA damage and reduction in the survival fraction (SF) following 24 h incubation in hNIS-expressing cells only. We found that 24,430 decays/cell (30 mBq/cell) were required to achieve SF0.37 (95%-confidence interval = [SF0.31; SF0.43]). Different approaches for determining the subcellular localisation of [99mTc]TcO4- led to SF0.37 nuclear-absorbed doses ranging from 0.33 to 11.7 Gy. In comparison, EBRT of MDA-MB-231.hNIS-GFP cells resulted in an SF0.37 of 2.59 Gy. In vivo retention of [99mTc]TcO4- after 24 h remained high at 28.0% ± 4.5% of the administered activity/gram tissue in MDA-MB-231.hNIS-GFP tumours. [99mTc]TcO4- caused DNA damage and reduced clonogenicity in this model, but only when the radioisotope was taken up into the cells. This data guides the safe use of technetium-99m during imaging and potential future therapeutic applications.


Subject(s)
Technetium/pharmacology , Technetium/pharmacokinetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Dose-Response Relationship, Radiation , Humans , Iodine Radioisotopes/pharmacology , Radiopharmaceuticals/pharmacology , Symporters/genetics , Tissue Distribution
2.
EJNMMI Res ; 11(1): 63, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34224019

ABSTRACT

BACKGROUND: Auger electron-emitting radionuclides have potential in targeted treatment of small tumors. Thallium-201 (201Tl), a gamma-emitting radionuclide used in myocardial perfusion scintigraphy, decays by electron capture, releasing around 37 Auger and Coster-Kronig electrons per decay. However, its therapeutic and toxic effects in cancer cells remain largely unexplored. Here, we assess 201Tl in vitro kinetics, radiotoxicity and potential for targeted molecular radionuclide therapy, and aim to test the hypothesis that 201Tl is radiotoxic only when internalized. METHODS: Breast cancer MDA-MB-231 and prostate cancer DU145 cells were incubated with 200-8000 kBq/mL [201Tl]TlCl. Potassium concentration varied between 0 and 25 mM to modulate cellular uptake of 201Tl. Cell uptake and efflux rates of 201Tl were measured by gamma counting. Clonogenic assays were used to assess cell survival after 90 min incubation with 201Tl. Nuclear DNA damage was measured with γH2AX fluorescence imaging. Controls included untreated cells and cells treated with decayed [201Tl]TlCl. RESULTS: 201Tl uptake in both cell lines reached equilibrium within 90 min and washed out exponentially (t1/2 15 min) after the radioactive medium was exchanged for fresh medium. Cellular uptake of 201Tl in DU145 cells ranged between 1.6 (25 mM potassium) and 25.9% (0 mM potassium). Colony formation by both cell lines decreased significantly as 201Tl activity in cells increased, whereas 201Tl excluded from cells by use of high potassium buffer caused no significant toxicity. Non-radioactive TlCl at comparable concentrations caused no toxicity. An estimated average 201Tl intracellular activity of 0.29 Bq/cell (DU145 cells) and 0.18 Bq/cell (MDA-MB-231 cells) during 90 min exposure time caused 90% reduction in clonogenicity. 201Tl at these levels caused on average 3.5-4.6 times more DNA damage per nucleus than control treatments. CONCLUSIONS: 201Tl reduces clonogenic survival and increases nuclear DNA damage only when internalized. These findings justify further development and evaluation of 201Tl therapeutic radiopharmaceuticals.

3.
Nucl Med Biol ; 98-99: 18-29, 2021.
Article in English | MEDLINE | ID: mdl-33964707

ABSTRACT

In oncology, the holy grail of radiotherapy is specific radiation dose deposition in tumours with minimal healthy tissue toxicity. If used appropriately, injectable, systemic radionuclide therapies could meet these criteria, even for treatment of micrometastases and single circulating tumour cells. The clinical use of α and ß- particle-emitting molecular radionuclide therapies is rising, however clinical translation of Auger electron-emitting radionuclides is hampered by uncertainty around their exact subcellular localisation, which in turn affects the accuracy of dosimetry. This review aims to discuss and compare the advantages and disadvantages of various subcellular localisation methods available to localise radiopharmaceuticals and radionuclides for in vitro investigations.


Subject(s)
Alpha Particles , Radiation Dosage , Radiopharmaceuticals
SELECTION OF CITATIONS
SEARCH DETAIL