Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Headache Pain ; 25(1): 9, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243174

ABSTRACT

BACKGROUND: Monoclonal antibodies directed against the neuropeptide calcitonin gene-related peptide (CGRP) are effective in the prevention of chronic and frequent episodic migraine. Since the antibodies do not cross the blood brain barrier, their antinociceptive effect is attributed to effects in meningeal tissues. We aimed to probe if such an antibody can be visualized within the dura mater and the trigeminal ganglia following its administration to rats and to examine if the activity of the trigeminovascular nocisensor complex is influenced by this treatment. METHODS: Effects of the anti-CGRP antibody galcanezumab on the trigeminovascular nocisensor complex was examined by measuring release of sensory neuropeptides and histamine from the rat dura mater. Deposits of galcanezumab were visualized by fluorescence microscopy in the trigeminal ganglion and the dura mater. RESULTS: Fluorophore-labelled galcanezumab was detected in the dura mater and the trigeminal ganglion up to 30 days after treatment affirming the long-lasting modulatory effect of this antibody. In female rats, seven days after systemic treatment with galcanezumab the capsaicin-induced release of CGRP was decreased, while that of substance P (SP) was increased in the dura mater. In control rats, release of the inhibitory neuropeptide somatostatin (SOM) was higher in females than in males. Stimulation with high concentration of KCl did not significantly change the release of SOM in control animals, while in rats treated with galcanezumab SOM release was slightly reduced. Galcanezumab treatment also reduced the amount of histamine released from dural mast cells upon stimulation with CGRP, while the effect of compound 48/80 on histamine release was not changed. CONCLUSIONS: Galcanezumab treatment is followed by multiple changes in the release of neuropeptides and histamine in the trigeminal nocisensor complex, which may contribute to the migraine preventing effect of anti-CGRP antibodies. These changes affecting the communication between the components of the trigeminal nocisensor complex may reduce pain susceptibility in migraine patients treated with CGRP targeting monoclonal antibodies.


Subject(s)
Antibodies, Monoclonal, Humanized , Calcitonin Gene-Related Peptide , Migraine Disorders , Humans , Male , Rats , Female , Animals , Calcitonin Gene-Related Peptide/pharmacology , Histamine , Dura Mater , Migraine Disorders/drug therapy , Trigeminal Ganglion , Antibodies, Monoclonal/pharmacology
2.
Pain ; 164(2): e103-e115, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36638307

ABSTRACT

ABSTRACT: Tissue injuries, including burns, are major causes of death and morbidity worldwide. These injuries result in the release of intracellular molecules and subsequent inflammatory reactions, changing the tissues' chemical milieu and leading to the development of persistent pain through activating pain-sensing primary sensory neurons. However, the majority of pain-inducing agents in injured tissues are unknown. Here, we report that, amongst other important metabolite changes, lysophosphatidylcholines (LPCs) including 18:0 LPC exhibit significant and consistent local burn injury-induced changes in concentration. 18:0 LPC induces immediate pain and the development of hypersensitivities to mechanical and heat stimuli through molecules including the transient receptor potential ion channel, vanilloid subfamily, member 1, and member 2 at least partly via increasing lateral pressure in the membrane. As levels of LPCs including 18:0 LPC increase in other tissue injuries, our data reveal a novel role for these lipids in injury-associated pain. These findings have high potential to improve patient care.


Subject(s)
Lysophosphatidylcholines , Pain , Humans , Lysophosphatidylcholines/toxicity
3.
Cell Tissue Res ; 383(2): 677-692, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32960358

ABSTRACT

Peripheral nerve injury is associated with spinal microgliosis which plays a pivotal role in the development of neuropathic pain behavior. Several agents of primary afferent origin causing the microglial reaction have been identified, but the type(s) of primary afferents that release these mediators are still unclear. In this study, specific labeling of C-fiber spinal afferents by lectin histochemistry and selective chemodenervation by capsaicin were applied to identify the type(s) of primary afferents involved in the microglial response. Comparative quantitative morphometric evaluation of the microglial reaction in central projection territories of intact and injured peripheral nerves in the superficial (laminae I and II) and deep (laminae III and IV) spinal dorsal horn revealed a significant, about three-fold increase in microglial density after transection of the sciatic or the saphenous nerve. Prior perineural treatment of these nerves with capsaicin, resulting in a selective defunctionalization of C-fiber afferent fibers failed to affect spinal microgliosis. Similarly, peripheral nerve injury-induced increase in microglial density was unaffected in rats treated neonatally with capsaicin known to result in a near-total loss of C-fiber dorsal root fibers. Perineural treatment with capsaicin per se did not evoke a significant increase in microglial density. These observations indicate that injury-induced spinal microgliosis may be attributed to phenotypic changes in injured myelinated primary afferent neurons, whereas the contribution of C-fiber primary sensory neurons to this neuroimmune response is negligible. Spinal myelinated primary afferents may play a hitherto unrecognized role in regulation of neuroimmune and perisynaptic microenvironments of the spinal dorsal horn.


Subject(s)
Capsaicin/therapeutic use , Gliosis/drug therapy , Gliosis/etiology , Peripheral Nerve Injuries/complications , Spinal Cord/pathology , Animals , Animals, Newborn , Capsaicin/pharmacology , Cell Count , Gliosis/pathology , Male , Peripheral Nerve Injuries/pathology , Peripheral Nerves/drug effects , Peripheral Nerves/pathology , Rats, Wistar , Spinal Cord Dorsal Horn/drug effects , Spinal Cord Dorsal Horn/pathology
4.
Pancreas ; 47(1): 110-115, 2018 01.
Article in English | MEDLINE | ID: mdl-29215540

ABSTRACT

OBJECTIVES: Recent observations demonstrated the expression of the insulin receptor (InsR) and its functional interaction with the transient receptor potential vanilloid type 1 receptor (TRPV1) in sensory ganglion neurons. Because sensory nerves are implicated in pancreatic inflammatory processes, we studied the colocalization of the InsR with TRPV1 and proinflammatory neuropeptides in spinal and vagal pancreatic afferent neurons. METHODS: Immunohistochemistry and quantitative morphometry were used to analyze the expression of TRPV1, InsR, substance P (SP), and calcitonin gene-related peptide (CGRP) in retrogradely labeled pancreatic dorsal root ganglion (DRG) and nodose ganglion (NG) neurons. RESULTS: The proportions of retrogradely labeled pancreatic TRPV1-, InsR-, SP-, and CGRP-immunoreactive neurons amounted to 68%, 48%, 33%, and 54% in DRGs and 64%, 49%, 40%, and 25% in the NGs. Of the labeled DRG and NG neurons, 23% and 35% showed both TRPV1 and InsR immunoreactivity. Colocalization of the InsR with SP or CGRP was demonstrated in 14% and 28% of pancreatic DRG and 24% and 8% of pancreatic NG neurons. CONCLUSIONS: The present findings provide morphological basis for possible functional interactions among the nociceptive ion channel TRPV1, the InsR, and the proinflammatory neuropeptides SP and CGRP expressed by pancreatic DRG and NG neurons.


Subject(s)
Neuropeptides/metabolism , Pancreas/metabolism , Receptor, Insulin/metabolism , Sensory Receptor Cells/metabolism , TRPV Cation Channels/metabolism , Animals , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Immunohistochemistry , Male , Pancreas/innervation , Protein Binding , Rats, Wistar , Vagus Nerve/cytology , Vagus Nerve/metabolism
5.
Headache ; 57(3): 441-454, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28133727

ABSTRACT

OBJECTIVE: Exploring the pathophysiological changes in transient receptor potential vanilloid 1 (TRPV1) receptor of the trigeminovascular system in high-fat, high-sucrose (HFHS) diet-induced obesity of experimental animals. BACKGROUND: Clinical and experimental observations suggest a link between obesity and migraine. Accumulating evidence indicates that metabolic and immunological alterations associated with obesity may potentially modulate trigeminovascular functions. A possible target for obesity-induced pathophysiological changes is the TRPV1/capsaicin receptor which is implicated in the pathomechanism of headaches in a complex way. METHODS: Male Sprague-Dawley rats were fed a regular (n = 25) or HFHS diet (n = 26) for 20 weeks. At the end of the dietary period, body weight of the animals was normally distributed in both groups and it was significantly higher in animals on HFHS diet. Therefore, experimental groups were regarded as control and HFHS diet-induced obese groups. Capsaicin-induced changes in meningeal blood flow and release of calcitonin gene-related peptide (CGRP) from dural trigeminal afferents were measured in control and obese rats. The distribution of TRPV1- and CGRP-immunoreactive meningeal sensory nerves was also compared in whole mount preparations of the dura mater. Metabolic parameters of the animals were assessed by examining glucose and insulin homeostasis as well as plasma cytokine concentrations. RESULTS: HFHS diet was accompanied by reduced food consumption and greater fluid and energy intakes in addition to increased body weight of the animals. HFHS diet increased fasting blood glucose and insulin concentrations as well as levels of circulating proinflammatory cytokines interleukin-1ß and interleukin-6. In obese animals, dural application of the archetypal TRPV1 agonist capsaicin resulted in significantly augmented vasodilatory and vasoconstrictor responses as compared to controls. Diet-induced obesity was also associated with enhanced basal and capsaicin-induced CGRP release from meningeal afferents ex vivo. Except for minor morphological changes, the distribution of dural TRPV1- and CGRP-immunoreactive afferents was similar in control and obese animals. CONCLUSIONS: Our results suggest that obesity induced by long-term HFHS diet results in sensitization of the trigeminovascular system. Changes in TRPV1-mediated vascular reactions and CGRP release are pathophysiological alterations that may be of relevance to the enhanced headache susceptibility of obese individuals.


Subject(s)
Diet/adverse effects , Dura Mater/metabolism , Obesity/etiology , Obesity/pathology , TRPV Cation Channels/metabolism , Analysis of Variance , Animals , Blood Glucose/drug effects , Calcitonin Gene-Related Peptide/metabolism , Capsaicin/pharmacology , Cerebrovascular Circulation/drug effects , Disease Models, Animal , Eating/physiology , Fasting/blood , Insulin/blood , Interleukin-1beta/blood , Interleukin-6/blood , Male , Meninges/blood supply , Obesity/blood , Rats , Rats, Sprague-Dawley , Statistics, Nonparametric
6.
Naunyn Schmiedebergs Arch Pharmacol ; 389(9): 1009-20, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27342418

ABSTRACT

Besides their deleterious action on cardiac muscle, anthracycline-type cytostatic agents exert significant neurotoxic effects on primary sensory neurons. Since cardiac sensory nerves confer protective effects on heart muscle and share common traits with cutaneous chemosensitive nerves, this study examined the effects of cardiotoxic doses of adriamycin on the function and morphology of epidermal nerves. Sensory neurogenic vasodilatation, plasma extravasation, and the neural CGRP release evoked by TRPV1 and TRPA1 agonists in vitro were examined by using laser Doppler flowmetry, the Evans blue technique, and ELISA, respectively. Carrageenan-induced hyperalgesia was assessed with the Hargreaves method. Immunohistochemistry was utilized to study cutaneous innervation. Adriamycin treatment resulted in profound reductions in the cutaneous neurogenic sensory vasodilatation and plasma extravasation evoked by the TRPV1 and TRPA1 agonists capsaicin and mustard oil, respectively. The in vitro capsaicin-, but not high potassium-evoked neural release of the major sensory neuropeptide, CGRP, was markedly attenuated after adriamycin treatment. Carrageenan-induced inflammatory hyperalgesia was largely abolished following the administration of adriamycin. Immunohistochemistry revealed a substantial loss of epidermal TRPV1-expressing nociceptive nerves and a marked thinning of the epidermis. These findings indicate impairments in the functions of TRPV1 and TRPA1 receptors expressed on cutaneous chemosensitive nociceptive nerves and the loss of epidermal axons following the administration of cardiotoxic doses of adriamycin. Monitoring of the cutaneous nociceptor function in the course of adriamycin therapy may well be of predictive value for early detection of the deterioration of cardiac nerves which confer protection against the deleterious effects of the drug.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Doxorubicin/toxicity , Hyperalgesia/prevention & control , Nociception/drug effects , Sensory Receptor Cells/drug effects , Skin/innervation , Animals , Biomarkers/metabolism , Calcitonin Gene-Related Peptide/metabolism , Capillary Permeability/drug effects , Capsaicin/pharmacology , Cardiotoxicity , Carrageenan , Disease Models, Animal , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Male , Motor Activity/drug effects , Mustard Plant , Plant Oils/pharmacology , Rats, Wistar , Regional Blood Flow/drug effects , Sensory Receptor Cells/metabolism , Skin/blood supply , TRPA1 Cation Channel , TRPC Cation Channels/agonists , TRPC Cation Channels/metabolism , TRPV Cation Channels/agonists , TRPV Cation Channels/metabolism , Time Factors , Vasodilation/drug effects
7.
Pain ; 150(1): 103-112, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20427129

ABSTRACT

Recent studies have demonstrated significant changes in the neuronal ganglioside status associated with altered functional states of nociceptive primary sensory neurons. In the present study, therefore, the effects of the inhibition of glucosylceramide synthase, the key enzyme of ganglioside synthesis, were studied on chemically defined populations and on the activation of TRPV1 of cultured adult rat sensory ganglion neurons. In control cultures, capsaicin resulted in the activation of TRPV1 in 29.7+/-2.5% of the neurons, as assessed with the cobalt uptake assay. Pretreatment of the cultures for 4days with an inhibitor of glucosylceramide synthase, d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (d-PDMP), significantly decreased the proportion of capsaicin-activated neurons to 11.6+/-1.2%. Immunohistochemistry demonstrated that, in control cultures, 37.5+/-1.4% of the neurons displayed TRPV1 immunoreactivity, whereas in d-PDMP-treated cultures the proportion of TRPV1-immunoreactive neurons was diminished to 18.2+/-2.1%. Further experiments disclosed that these effects of d-PDMP were reversible. The capsaicin-, but not the high potassium-induced release of CGRP, was also significantly reduced after d-PDMP treatment, as measured with ELISA. The proportions of IB4- and CGRP-positive neurons were not significantly affected by d-PDMP. The present observations demonstrate that inhibition of neuronal ganglioside synthesis profoundly modulates the expression of the TRPV1 receptor, apparently leaving other markers of nociceptive neurons, such as CGRP and IB4, unaffected. The findings indicate that as yet unidentified ganglioside(s) synthesized by the glucosylceramide synthase pathway may be essential for nociception through mechanisms which may implicate membrane lipid raft function and/or altered nerve growth factor signaling, which are essential for the TRPV1 receptor function.


Subject(s)
Capsaicin/pharmacology , Ganglia, Spinal/metabolism , Glucosyltransferases/antagonists & inhibitors , Neurons/metabolism , TRPV Cation Channels/metabolism , Analysis of Variance , Animals , Cell Count , Cells, Cultured , Enzyme Inhibitors/pharmacology , Enzyme-Linked Immunosorbent Assay , Ganglia, Spinal/cytology , Ganglia, Spinal/drug effects , Immunohistochemistry , Male , Morpholines/pharmacology , Neurites/drug effects , Neurites/metabolism , Neurons/cytology , Neurons/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...