Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE J Transl Eng Health Med ; 10: 2500410, 2022.
Article in English | MEDLINE | ID: mdl-35774413

ABSTRACT

Minimally invasive surgery (MIS) incorporates surgical instruments through small incisions to perform procedures. Despite the potential advantages of MIS, the lack of tactile sensation and haptic feedback due to the indirect contact between the surgeon's hands and the tissues restricts sensing the strength of applied forces or obtaining information about the biomechanical properties of tissues under operation. Accordingly, there is a crucial need for intelligent systems to provide an artificial tactile sensation to MIS surgeons and trainees. This study evaluates the potential of our proposed real-time grasping forces and deformation angles feedback to assist surgeons in detecting tissues' stiffness. A prototype was developed using a standard laparoscopic grasper integrated with a force-sensitive resistor on one grasping jaw and a tunneling magneto-resistor on the handle's joint to measure the grasping force and the jaws' opening angle, respectively. The sensors' data are analyzed using a microcontroller, and the output is displayed on a small screen and saved to a log file. This integrated system was evaluated by running multiple grasp-release tests using both elastomeric and biological tissue samples, in which the average force-to-angle-change ratio precisely resembled the stiffness of grasped samples. Another feature is the detection of hidden lumps by palpation, looking for sudden variations in the measured stiffness. In experiments, the real-time grasping feedback helped enhance the surgeons' sorting accuracy of testing models based on their stiffness. The developed tool demonstrated a great potential for low-cost tactile sensing in MIS procedures, with room for future improvements. Significance: The proposed method can contribute to MIS by assessing stiffness, detecting hidden lumps, preventing excessive forces during operation, and reducing the learning curve for trainees.


Subject(s)
Laparoscopy/instrumentation , Minimally Invasive Surgical Procedures/instrumentation , Surgical Instruments/classification , Equipment Design , Touch
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7336-7339, 2021 11.
Article in English | MEDLINE | ID: mdl-34892792

ABSTRACT

As an alternative to open surgery, minimally invasive surgery (MIS) utilizes small skin incisions as ports to insert an endoscope and surgical tools. MIS offers significant advantages, including reduced pain, shorter recovery times, and better cosmetic outcomes than classical surgeries. However, MIS procedures come at the cost of losing the "sense of touch," which surgeons rely on to examine the tissues under operation, palpate organs, and assessing their conditions. This has encouraged researchers to develop smart MIS tools that provide artificial tactile sensation, mostly using electrical- or optical-based tactile sensors. In this work, we introduce a prototype of a smart laparoscopic grasper integrated with force and angle sensing capabilities via off-the-shelf sensors. The specification and design of the smart grasper are presented, as well as a demonstration on stiffness assessment of elastomeric samples and chicken meat. Overall, our prototype exhibits great potential for MIS applications, with room for future improvements.Clinical Relevance- The development of a smart laparoscopic grasper for MIS applications helps in restoring the tactile sensation to surgeons and enables safe grasping and manipulation of human organs.


Subject(s)
Laparoscopy , Minimally Invasive Surgical Procedures , Equipment Design , Humans , Laparoscopes , Touch
3.
Front Robot AI ; 8: 705662, 2021.
Article in English | MEDLINE | ID: mdl-35071332

ABSTRACT

As opposed to open surgery procedures, minimally invasive surgery (MIS) utilizes small skin incisions to insert a camera and surgical instruments. MIS has numerous advantages such as reduced postoperative pain, shorter hospital stay, faster recovery time, and reduced learning curve for surgical trainees. MIS comprises surgical approaches, including laparoscopic surgery, endoscopic surgery, and robotic-assisted surgery. Despite the advantages that MIS provides to patients and surgeons, it remains limited by the lost sense of touch due to the indirect contact with tissues under operation, especially in robotic-assisted surgery. Surgeons, without haptic feedback, could unintentionally apply excessive forces that may cause tissue damage. Therefore, incorporating tactile sensation into MIS tools has become an interesting research topic. Designing, fabricating, and integrating force sensors onto different locations on the surgical tools are currently under development by several companies and research groups. In this context, electrical force sensing modality, including piezoelectric, resistive, and capacitive sensors, is the most conventionally considered approach to measure the grasping force, manipulation force, torque, and tissue compliance. For instance, piezoelectric sensors exhibit high sensitivity and accuracy, but the drawbacks of thermal sensitivity and the inability to detect static loads constrain their adoption in MIS tools. Optical-based tactile sensing is another conventional approach that facilitates electrically passive force sensing compatible with magnetic resonance imaging. Estimations of applied loadings are calculated from the induced changes in the intensity, wavelength, or phase of light transmitted through optical fibers. Nonetheless, new emerging technologies are also evoking a high potential of contributions to the field of smart surgical tools. The recent development of flexible, highly sensitive tactile microfluidic-based sensors has become an emerging field in tactile sensing, which contributed to wearable electronics and smart-skin applications. Another emerging technology is imaging-based tactile sensing that achieved superior multi-axial force measurements by implementing image sensors with high pixel densities and frame rates to track visual changes on a sensing surface. This article aims to review the literature on MIS tactile sensing technologies in terms of working principles, design requirements, and specifications. Moreover, this work highlights and discusses the promising potential of a few emerging technologies towards establishing low-cost, high-performance MIS force sensing.

4.
Sci Rep ; 9(1): 9914, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31289305

ABSTRACT

The electronic transport in low-dimensional materials is controlled by quantum coherence and non-equilibrium statistics. The scope of the present investigation is to search for the origins of negative-differential resistance (NDR) behavior in N-doped ultra-narrow zigzag-edge ZnO nano-ribbons (ZnO-NRs). A state-of-the-art technique, based on a combination of density-functional theory (DFT) and non-equilibrium Green's function (NEGF) formalism, is employed to probe the electronic and transport properties. The effect of location of N dopant, with respect to the NR edges, on IV-curve and NDR is tested and three different positions for N-atom are considered: (i) at the oxygen-rich edge; (ii) at the center; and (iii) at the Zn-rich edge. The results show that both resistance and top-to-valley current ratio (TVCR) reduce when N-atom is displaced from O-rich edge to center to Zn-rich edge, respectively. After an analysis based on the calculations of transmission coefficient versus bias, band structures, and charge-density plots of HOMO/LUMO states, one is able to draw a conclusion about the origins of NDR. The unpaired electron of N dopant is causing the curdling/localization of wave-function, which in turn causes strong back-scattering and suppression of conductive channels. These effects manifest themselves in the drawback of electric current (or so called NDR). The relevance of NDR for applications in nano-electronic devices (e.g., switches, rectifiers, amplifiers, gas sensing) is further discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...