ABSTRACT
Galactinol synthase (GolS) catalyzes the first and rate-limiting step in the synthesis of raffinose family of oligosaccharides (RFOs), which serve as storage and transport sugars, signal transducers, compatible solutes and antioxidants in higher plants. The present work aimed to assess the potential functions of citrus GolS in mechanisms of stress response and tolerance. By homology searches, eight GolS genes were found in the genomes of Citrus sinensis and C. clementina. Phylogenetic analysis showed that there is a GolS ortholog in C. clementina for each C. sinensis GolS, which have evolved differently from those of Arabidopsis thaliana. Transcriptional analysis indicated that most C. sinensis GolS (CsGolS) genes show a low-level tissue-specific and stress-inducible expression in response to drought and salt stress treatments, as well as to 'Candidatus Liberibacter asiaticus' infection. CsGolS6 overexpression resulted in improved tobacco tolerance to drought and salt stresses, contributing to an increased mesophyll cell expansion, photosynthesis and plant growth. Primary metabolite profiling revealed no significant changes in endogenous galactinol, but different extents of reduction of raffinose in the transgenic plants. On the other hand, a significant increase in the levels of metabolites with antioxidant properties, such as ascorbate, dehydroascorbate, alfa-tocopherol and spermidine, was observed in the transgenic plants. These results bring evidence that CsGolS6 is a potential candidate for improving stress tolerance in citrus and other plants.
Subject(s)
Arabidopsis , Citrus , Antioxidants/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Citrus/genetics , Citrus/metabolism , Galactosyltransferases , Oligosaccharides/metabolism , Phylogeny , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Raffinose/metabolism , Spermidine/metabolism , Tocopherols/metabolismABSTRACT
Heterobaric leaves have bundle sheath extensions (BSEs) that compartmentalize the parenchyma, whereas homobaric leaves do not. The presence of BSEs affects leaf hydraulics and photosynthetic rate. The tomato (Solanum lycopersicum) obscuravenosa (obv) mutant lacks BSEs. Here, we identify the obv gene and the causative mutation, a nonsynonymous amino acid change that disrupts a C2H2 zinc finger motif in a putative transcription factor. This mutation exists as a polymorphism in the natural range of wild tomatoes but has increased in frequency in domesticated tomatoes, suggesting that the latter diversified into heterobaric and homobaric leaf types. The obv mutant displays reduced vein density, leaf hydraulic conductance and photosynthetic assimilation rate. We show that these and other pleiotropic effects on plant development, including changes in leaf insertion angle, leaf margin serration, minor vein density, and fruit shape, are controlled by OBV via changes in auxin signaling. Loss of function of the transcriptional regulator AUXIN RESPONSE FACTOR 4 (ARF4) also results in defective BSE development, revealing an additional component of a genetic module controlling aspects of leaf development important for ecological adaptation and subject to breeding selection.
Subject(s)
Solanum lycopersicum , Indoleacetic Acids/metabolism , Solanum lycopersicum/metabolism , Photosynthesis/genetics , Plant Breeding , Plant Leaves/metabolism , Plant Proteins/metabolismABSTRACT
Efficient use of natural resources (e.g., light, water, and nutrients) can be improved with a tailored developmental program that maximizes the lifetime and fitness of plants. In plant shoots, a developmental phase represents a time window in which the meristem triggers the development of unique morphological and physiological traits, leading to the emergence of leaves, flowers, and fruits. Whereas developmental phases in plant shoots have been shown to enhance food production in crops, this phenomenon has remained poorly investigated in roots. In light of recent advances, we suggest that root development occurs in three main phases: root apical meristem appearance, foraging, and senescence. We provide compelling evidence suggesting that these phases are regulated by at least four developmental pathways: autonomous, non-autonomous, hormonal, and periodic. Root developmental pathways differentially coordinate organ plasticity, promoting morphological alterations, tissue regeneration, and cell death regulation. Furthermore, we suggest how nutritional checkpoints may allow progression through the developmental phases, thus completing the root life cycle. These insights highlight novel and exciting advances in root biology that may help maximize the productivity of crops through more sustainable agriculture and the reduced use of chemical fertilizers.
Subject(s)
Meristem , Plant Roots , Plant Leaves , Plant Roots/metabolism , Plant Shoots , PlantsABSTRACT
Several plant species such as Pfaffia glomerata are widely used in traditional Brazilian medicine as stimulants and aphrodisiacs. In this regard, the aim of our study was to explore the effects of the long-term intake of the hydro-alcoholic root extract of P glomerata on the germ and somatic cells within the seminiferous tubules in adult Balb/c mice. The experimental groups were placed as: controls (water and DMSO), and treated with 300 and 400 mg/kg of the root extract. The number of germ and somatic cells, the proportion of pathological seminiferous tubules, and the germ cell apoptotic levels were evaluated. The volume and proportion of the seminiferous epithelium was decreased after the extract intake due to the increased germ cell apoptotic levels. Vacuolization of Sertoli cell cytoplasm was observed widely in pathological tubules, along with fully disorganized epithelia, showing multinucleated cells, which lead to decreased daily sperm production. Taken together, our results indicate that long-term intake of the P glomerata caused deleterious effects on spermatogenesis by inducing apoptosis and altering the seminiferous tubule's epithelial dynamics.
Subject(s)
Amaranthaceae/chemistry , Plant Extracts/pharmacology , Seminiferous Epithelium/drug effects , Spermatogenesis/drug effects , Animals , Apoptosis/drug effects , Germ Cells/drug effects , Germ Cells/pathology , Male , Mice , Mice, Inbred BALB C , Plant Roots/chemistry , Seminiferous Epithelium/pathology , Seminiferous Tubules/drug effects , Seminiferous Tubules/pathology , Sertoli Cells/drug effects , Sertoli Cells/pathologyABSTRACT
Intraspecies or interspecies crossings transfer relevant alleles between plants. However, some interspecies crossings involving Passiflora species impede ovule fertilization and the viable development of seeds. Thus, the purpose of this study was to verify the viability of interspecific crossings and monitor pollen tube development. The experiment had six species of Passiflora in the reciprocal crossings. Histochemical tests aimed to evaluate the percentage of intraspecies or interspecies crossings that resulted in fruit development and pollen tube development. Ovule fertilization and fruit development occurred in determined directions of crossings when controlling the female or male genitor, but only one case of reciprocal crossing had success. In crossings with no fruit development, histological analysis showed that some callus developed in the stigma and style, confirming unilateral and interspecies incompatibility in the genus Passiflora to some species and some directions of crossings.
Subject(s)
Passiflora , Flowers , Ovule , Pollen , PollinationABSTRACT
Somatic embryogenesis from explants from hermaphrodite papaya mother plants is an alternative for the production of true-to-type plants without the need for sexing. This study aimed to analyze hormonal and osmotic inducers in different somatic embryogenesis stages in the commercial hermaphrodite hybrid papaya UENF/Caliman 01. Leaf disks from in vitro shoots originated from ex vitro hermaphrodite plants were cultured in induction medium supplemented with different concentrations of 2,4-D (6, 9, 12, 15, and 18 µM) and 4-CPA (19, 22, 25, 28, and 31 µM). After 90 days, the formation of somatic embryos was verified. The 2,4-D induced the formation of light brown calli with low frequency (20%) of somatic embryogenesis. However, 4-CPA (25 µM) induced 96% of embryogenic calli, which were transferred to maturation medium (MM) and cultured for 30 days. The MM contained ABA (0.5 µM) and AC (15 g L-1) and produced 36.6 somatic embryos callus-1, mainly on cotyledonary stage. Cotyledonary embryos were transferred to germination medium supplemented with gibberellic acid (GA3) (0.0, 1.44, 2.88, and 4.32 µM), and the conversion into plantlets was enhanced with GA3 at 2.88 µM.
Subject(s)
Carica/embryology , Carica/physiology , Germination/physiology , Plant Somatic Embryogenesis Techniques/methods , Time FactorsABSTRACT
BACKGROUND AND AIMS: Juvenile-to-adult phase transition is marked by changes in leaf morphology, mostly due to the temporal development of the shoot apical meristem, a phenomenon known as heteroblasty. Sugars and microRNA-controlled modules are components of the heteroblastic process in Arabidopsis thaliana leaves. However, our understanding about their roles during phase-changing in other species, such as Passiflora edulis, remains limited. Unlike Arabidopsis, P. edulis (a semi-woody perennial climbing vine) undergoes remarkable changes in leaf morphology throughout juvenile-to-adult transition. Nonetheless, the underlying molecular mechanisms are unknown. METHODS: Here we evaluated the molecular mechanisms underlying the heteroblastic process by analysing the temporal expression of microRNAs and targets in leaves as well as the leaf metabolome during P. edulis development. KEY RESULTS: Metabolic profiling revealed a unique composition of metabolites associated with leaf heteroblasty. Increasing levels of glucose and α-trehalose were observed during juvenile-to-adult phase transition. Accumulation of microRNA156 (miR156) correlated with juvenile leaf traits, whilst miR172 transcript accumulation was associated with leaf adult traits. Importantly, glucose may mediate adult leaf characteristics during de novo shoot organogenesis by modulating miR156-targeted PeSPL9 expression levels at early stages of shoot development. CONCLUSIONS: Altogether, our results suggest that specific sugars may act as co-regulators, along with two microRNAs, leading to leaf morphological modifications throughout juvenile-to-adult phase transition in P. edulis.
Subject(s)
Arabidopsis , MicroRNAs , Passiflora , Gene Expression Regulation, Plant , Plant LeavesABSTRACT
This study evaluated the effect of osmoregulators and carbohydrates on the maturation and germination of somatic embryos of papaya 'Golden THB'. Cotyledon explants from papaya seedlings germinated in vitro on basal MS medium were cultured on somatic embryogenesis induction medium (IM) containing MS salts, myo-inositol, sucrose, agar and p-chlorophenoxyacetic acid. After 50 days, embryogenic calli were transferred onto maturation media (MM) for 45 additional days. For experiment 1, a MS-based medium supplemented with abscisic acid, activated charcoal and concentrations of PEG 6000 (0; 40; 50; 60 and 70 g L-1) was used, whereas for experiment 2 malt extract concentrations (0; 0.1; 0.2; 0.3 and 0.4 g L-1) were assessed. The normal cotyledonary somatic embryos produced in experiment 2 were transferred to the germination medium (GM). The GM consisted of full-strength MS medium, sucrose, agar and was supplemented with myo-inositol at varying concentrations (0; 0.275; 0.55 and 0.825 mM). The PEG concentrations tested impaired the maturation of 'Golden THB' papaya somatic embryos. The MM, supplemented with malt extract at 0.153 g L-1, promoted the greatest development of normal somatic embryos (18.28 SE calli-1), that is, two cotyledonary leaves produced 36.56 SE calli-1. The supplementation with 0.45 mM myo-inositol provided the highest germination percentage (47.42%) and conversion to emblings.
Subject(s)
Abscisic Acid/pharmacology , Carbohydrates/pharmacology , Carica/drug effects , Germination/drug effects , Osmoregulation , Plant Growth Regulators/pharmacology , Plant Shoots/drug effects , Plant Somatic Embryogenesis Techniques/methods , Polymers/pharmacology , Carica/growth & development , Plant Shoots/growth & developmentABSTRACT
ABSTRACT The aim of this study was to evaluate somatic embryogenesis in juvenile explants of the THB papaya cultivar. Apical shoots and cotyledonary leaves were inoculated in an induction medium composed of different concentrations of 2,4-D (6, 9, 12, 15 and 18 µM) or 4-CPA (19, 22, 25, 28 and 31 µM). The embryogenic calluses were transferred to a maturation medium for 30 days. Histological analysis were done during the induction and scanning electron microscopy after maturing. For both types of auxin, embryogenesis was achieved at higher frequencies with cotyledonary leaves incubated in induction medium than with apical shoots; except for callogenesis. The early-stage embryos (e.g., globular or heart-shape) predominated. Among the auxins, best results were observed in cotyledonary leaves induced with 4-CPA (25 µM). Histological analyses of the cotyledonary leaf-derived calluses confirmed that the somatic embryos (SEs) formed from parenchyma cells, predominantly differentiated via indirect and multicellular origin and infrequently via synchronized embryogenesis. The secondary embryogenesis was observed during induction and maturation phases in papaya THB cultivar. The combination of ABA (0.5 µM) and AC (15 g L-1) in maturation medium resulted in the highest somatic embryogenesis induction frequency (70 SEs callus-1) and the lowest percentage of early germination (4%).
Subject(s)
Plant Shoots/physiology , Carica/embryology , Carica/physiology , Plant Somatic Embryogenesis Techniques/methods , Indoleacetic Acids/analysis , Plant Growth Regulators/pharmacology , Microscopy, Electron, Scanning , Abscisic Acid/pharmacology , Plant Shoots/drug effects , Plant Leaves/drug effects , Plant Leaves/physiology , Germination/drug effects , Germination/physiology , Culture Media , Carica/anatomy & histology , Carica/drug effectsABSTRACT
The aim of this study was to evaluate somatic embryogenesis in juvenile explants of the THB papaya cultivar. Apical shoots and cotyledonary leaves were inoculated in an induction medium composed of different concentrations of 2,4-D (6, 9, 12, 15 and 18 µM) or 4-CPA (19, 22, 25, 28 and 31 µM). The embryogenic calluses were transferred to a maturation medium for 30 days. Histological analysis were done during the induction and scanning electron microscopy after maturing. For both types of auxin, embryogenesis was achieved at higher frequencies with cotyledonary leaves incubated in induction medium than with apical shoots; except for callogenesis. The early-stage embryos (e.g., globular or heart-shape) predominated. Among the auxins, best results were observed in cotyledonary leaves induced with 4-CPA (25 µM). Histological analyses of the cotyledonary leaf-derived calluses confirmed that the somatic embryos (SEs) formed from parenchyma cells, predominantly differentiated via indirect and multicellular origin and infrequently via synchronized embryogenesis. The secondary embryogenesis was observed during induction and maturation phases in papaya THB cultivar. The combination of ABA (0.5 µM) and AC (15 g L-1) in maturation medium resulted in the highest somatic embryogenesis induction frequency (70 SEs callus-1) and the lowest percentage of early germination (4%).
Subject(s)
Carica/embryology , Carica/physiology , Indoleacetic Acids/analysis , Plant Shoots/physiology , Plant Somatic Embryogenesis Techniques/methods , Abscisic Acid/pharmacology , Carica/anatomy & histology , Carica/drug effects , Culture Media , Germination/drug effects , Germination/physiology , Microscopy, Electron, Scanning , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Plant Leaves/physiology , Plant Shoots/drug effects , Reference Values , Reproducibility of Results , Time FactorsABSTRACT
KEY MESSAGE: Expression of dengue-2 virus NS1 protein in Nicotiana tabacum plants for development of dengue immunodiagnostic kits. Dengue is one of the most important diseases caused by arboviruses in the world. A significant increase in its geographical distribution has been noticed over the last 20 years, with continuous transmission of several serotypes and emergence of the hemorrhagic fever in areas where the disease was previously not prevalent. Although the methodological processes for dengue diagnosis are in deep development and improvement, a limitation for the realization of dengue diagnostic tests is the difficulty of large-scale production of the antigen to be used in diagnostic tests. Due to this demand, the purpose of this study was to obtain the non-structural protein 1 (NS1) from dengue-2 serotype by heterologous expression in Nicotiana tabacum (Havana). After confirmation of the NS1 protein gene integration in the plant genome, the heterologous protein was characterized using SDS-PAGE and immunoblotting. In an immunoenzymatic test, the recombinant NS1 protein presents an antigen potential for development of dengue immunodiagnostic kits.
Subject(s)
Dengue/diagnosis , Nicotiana/genetics , Recombinant Proteins/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Aedes/virology , Agrobacterium tumefaciens/genetics , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Case-Control Studies , Dengue Virus/immunology , Dengue Virus/pathogenicity , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Humans , Immunoblotting , Plants, Genetically Modified , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Nicotiana/metabolism , Viral Nonstructural Proteins/metabolismABSTRACT
In the present study, the full-length cDNA sequences of PSY, PDS, and ZDS, encoding the early carotenoid biosynthetic enzymes in the carotenoid pathway of grapefruit (Citrus paradisi), were isolated and characterized for the first time. CpPSY contained a 1311-bp open reading frame (ORF) encoding a polypeptide of 436 amino acids, CpPDS contained a 1659-bp ORF encoding a polypeptide of 552 amino acids, and CpZDS contained a 1713-bp ORF encoding a polypeptide of 570 amino acids. Phylogenetic analysis indicated that CpPSY shares homology with PSYs from Citrus, tomato, pepper, Arabidopsis, and the monocot PSY1 group, while CpPDS and CpZDS are most closely related to orthologs from Citrus and tomato. Expression analysis revealed fluctuations in CpPSY, CpPDS, and CpZDS transcript abundance and a non-coordinated regulation between the former and the two latter genes during fruit development in albedo and juice vesicles of white ('Duncan') and red ('Flame') grapefruits. A 3× higher upregulation of CpPSY expression in juice vesicles of red-fleshed 'Flame' as compared to white-fruited 'Duncan' was observed in the middle stages of fruit development, which correlates with the well documented accumulation pattern of lycopene in red grapefruit. Together with previous data, our results suggest that the primary mechanism controlling lycopene accumulation in red grapefruit involves the transcriptional upregulation of CpPSY, which controls the flux into the carotenoid pathway, and the downregulated expression of CpLCYB2, which controls the step of cyclization of lycopene in chromoplasts during fruit ripening. A correlation between CpPSY expression and fruit color evolution in red grapefruit is demonstrated.
Subject(s)
Biosynthetic Pathways/genetics , Carotenoids/biosynthesis , Citrus paradisi/enzymology , Enzymes/genetics , Enzymes/metabolism , Gene Expression Regulation, Plant/genetics , Phylogeny , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Computational Biology , DNA Primers/genetics , Gene Components/genetics , Gene Expression Profiling , Lycopene , Molecular Sequence Data , Open Reading Frames/genetics , Sequence Analysis, DNAABSTRACT
The tropical tree Bixa orellana L. produces a range of secondary metabolites which biochemical and molecular biosynthesis basis are not well understood. In this work we have characterized a set of ESTs from a non-normalized cDNA library of B. orellana seeds to obtain information about the main developmental and metabolic processes taking place in developing seeds and their associated genes. After sequencing a set of randomly selected clones, most of the sequences were assigned with putative functions based on similarity, GO annotations and protein domains. The most abundant transcripts encoded proteins associated with cell wall (prolyl 4-hydroxylase), fatty acid (acyl carrier protein), and hormone/flavonoid (2OG-Fe oxygenase) synthesis, germination (MADS FLC-like protein) and embryo development (AP2/ERF transcription factor) regulation, photosynthesis (chlorophyll a-b binding protein), cell elongation (MAP65-1a), and stress responses (metallothionein- and thaumatin-like proteins). Enzymes were assigned to 16 different metabolic pathways related to both primary and secondary metabolisms. Characterization of two candidate genes of the bixin biosynthetic pathway, BoCCD and BoOMT, showed that they belong, respectively, to the carotenoid-cleavage dioxygenase 4 (CCD4) and caffeic acid O-methyltransferase (COMT) families, and are up-regulated during seed development. It indicates their involvement in the synthesis of this commercially important carotenoid pigment in seeds of B. orellana. Most of the genes identified here are the first representatives of their gene families in B. orellana.
Subject(s)
Bixaceae/genetics , Dioxygenases/genetics , Expressed Sequence Tags , Methyltransferases/genetics , Seeds/metabolism , Gene Library , Genes, Plant , Models, Genetic , Multigene Family , Phylogeny , Plant Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Time FactorsABSTRACT
In Brazil, at least eight begomoviruses including Tomato rugose mosaic virus (ToRMV) and Tomato yellow spot virus (ToYSV) infect tomatoes. ToYSV symptoms in tomato and Nicotiana benthamiana appear earlier and are more severe compared to those of ToRMV. We investigated the role of several factors in this differential adaptation. To analyze infection kinetics, a single leaf was inoculated and subsequently detached after different periods of time. Viral DNA accumulation was quantified in plants, viral replication was analyzed in protoplasts, and tissue tropism was determined by in situ hybridization. Results indicate that ToYSV establishes a systemic infection and reaches a higher concentration earlier than ToRMV in both hosts. ToRMV negatively interferes with ToYSV during the initial stages of infection, but once systemic infection is established this interference ceases. In N. benthamiana, ToYSV invades the mesophyll, while ToRMV is phloem-restricted. During dual infection in this host, ToYSV releases ToRMV from the phloem.
Subject(s)
Begomovirus/physiology , Nicotiana/virology , Plant Diseases/virology , Solanum lycopersicum/virology , Viral Interference , Begomovirus/pathogenicity , Brazil , Host-Pathogen Interactions , VirulenceABSTRACT
The tropical plant Bixa orellana L. (annatto) produces an array of natural products, including the pigment bixin used in the food and cosmetics industries. In order to understand the biochemical and molecular basis of the biosynthesis of these natural products, a reliable method for isolating high yields of high-quality RNA is required. Here we described a successful and reproducible method for isolation and purification of high-quantity and high-quality RNA from different tissues of annatto. This protocol overcomes the usual problems associated with large amounts of polyphenols, polysaccharides, pigments, and other secondary metabolites that are not easily removed by conventional extraction procedures. Furthermore, the proposed protocol can be easily carried out in any laboratory and it could also be extended to isolate RNA from other plant species showing similar abundance of compounds that interfere with RNA extractions. The yield and quality of the RNA were monitored by spectrophotometric analysis, separation on agarose gel, Reverse Transcription-Polymerase Chain Reaction (RT-PCR), and construction of a cDNA library.
Subject(s)
Bixaceae/genetics , Carotenoids/metabolism , Flavonoids/metabolism , Phenols/metabolism , Plant Extracts/metabolism , Plant Structures/chemistry , Polysaccharides/metabolism , RNA, Plant/isolation & purification , Bixaceae/chemistry , Bixaceae/metabolism , Cloning, Molecular , Gene Library , Pigments, Biological/metabolism , Plant Extracts/chemistry , Plant Extracts/genetics , Plant Structures/genetics , Plant Structures/metabolism , PolyphenolsABSTRACT
The binding protein BiP is an endoplasmic reticulum (ER)-resident member of the HSP70 stress-related protein family, which is essential for the constitutive function of the ER. In addition to responding to a variety of environmental stimuli, plant BiP exhibits a tissue-specific regulation. We have isolated two soybean BiP genomic clones, designated gsBiP6 and gsBiP9, and different extensions of their 5' flanking sequences were fused to beta-glucuronidase (GUS) reporter gene and introduced into Nicotiana tabacum by Agrobacterium tumefaciens-mediated transformation. Transgenic plants displayed prominent GUS activity in the vascular bundles of roots and shoots as well as in regions of intense cell division, such as procambial region and apical meristems. Promoter deletion analyses identified two cis-regulatory functional domains that are important for the spatially-regulated activation of BiP expression under normal plant development. While an AT-rich enhancer-like sequence, designated cis-acting regulatory domain 1, CRD1 (-358 to -211, on gsBiP6), activated expression of the BiP minimal promoter in all organs analyzed, BiP promoter activity in meristematic tissues and phloem cells required the presence of a second activating domain, CRD2 (-211 to -80). Apparently, the CRD2 sequence also harbors negative cis-acting elements, because removal of this region caused activation of gsBiP6 promoter in parenchymatic xylem rays. These results suggest that the tissue-specific control of BiP gene expression requires a complex integration of multiple cis-acting regulatory elements on the promoter.