Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 12(1): 2860, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35190658

ABSTRACT

Climate change and disturbance can alter invasion success of clonal plants by differentially affecting the clonal traits influencing their establishment as young plants. Clonal traits related to the vegetative reproduction of native Pascopyrum smithii and non-native Bromus inermis grass seedlings were evaluated under altered precipitation frequencies and a single grazing event. Pascopyrum smithii maintained similar vegetative reproduction under three simulated precipitation frequencies whereas B. inermis vegetative reproduction declined as precipitation became more intermittent. Vegetative reproduction of the non-native B. inermis was greater than the native P. smithii under all simulated precipitation frequencies except the most intermittent scenario. A single grazing event did not affect either species' response to intra-annual precipitation variability but did slightly reduce their clonal growth and increase their bud dormancy. In young plants, clonal traits of the invasive grass favored its superior expansion and population growth compared to the native grass except under the most severe climate change scenario. Grassland restoration using native P. smithii seeds would be successful in most years due to its resilient clonal growth in a changing climate. Clonal infrastructure development in young plants is critical to clonal plant establishment and persistence in a changing climate and under disturbed conditions.


Subject(s)
Bromus/growth & development , Climate Change , Poaceae/growth & development , Seedlings/growth & development , Environmental Restoration and Remediation/methods , Grassland , Introduced Species , Rain
2.
Ann Bot ; 123(7): 1099-1118, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31167028

ABSTRACT

BACKGROUND: Below-ground bud banks have experienced much recent interest due to discoveries that they (1) account for the majority of seasonal population renewal in many communities, (2) are crucial to regeneration following disturbance, and (3) have important consequences for plant population dynamics and plant and ecosystem function across a number of habitats. SCOPE: This review presents an overview of the role of bud banks in plant population renewal, examines bud bank life history, summarizes bud bank traits and their potential ecological implications, synthesizes the response of bud banks to disturbance, and highlights gaps to guide future research. The characteristics and life history of buds, including their natality, dormancy, protection and longevity, provide a useful framework for advancing our understanding of bud banks. The fate of buds depends on their age, size, type, location, and biotic and abiotic factors that collectively regulate bud bank dynamics. A bud bank can provide a demographic storage effect stabilizing population dynamics, and also confer resistance to disturbance and invasion. Regeneration capacity following disturbance is determined by interactions among the rates of bud natality, depletion and dormancy (meristem limitation), and the resources available to support the regeneration process. The resulting response of plants and their bud banks to disturbances such as fire, herbivory and anthropogenic sources determines the community's regenerative capacity. CONCLUSIONS: Vegetation responses to environmental change may be mediated through changes in bud bank dynamics and phenology. Environmental change that depletes the bud bank or prohibits its formation likely results in a loss of vegetation resilience and plant species diversity. Standardization of bud sampling, examination of bud banks in more ecosystems and their response to environmental variation and disturbance regimes, employment of stage-structured bud bank modelling and evaluation of the cost of bud bank construction and maintenance will benefit this expanding field of research.


Subject(s)
Ecosystem , Fires , Ecology , Herbivory , Plants
3.
Am J Bot ; 102(9): 1462-71, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26373977

ABSTRACT

PREMISE OF THE STUDY: Tiller recruitment from the belowground bud bank of caespitose grasses influences their ability to monopolize local resources and, hence, their genet fitness. Differences in bud production and outgrowth among tiller types within a genet and among species may explain co-occurrence of caespitose grasses. This study aimed to characterize genet bud-bank and tiller production and dynamics in two co-occurring species and compare their vegetative reproductive strategies. METHODS: Bud-bank and tiller dynamics of Hesperostipa comata and Nassella viridula, dominant C3 caespitose grasses in the northern mixed-grass prairie of North America, were assessed throughout an annual cycle. KEY RESULTS: The two species showed similar strategies, maintaining polycyclic tillers and thus creating mixed-age genet bud banks comprising multiple bud cohorts produced in different years. Vegetative tillers produced the majority of buds, whereas flowering tillers contributed little to the bud bank. Buds lived for at least 2 yr and were maintained in multiple developmental stages throughout the year. Because bud longevity rarely exceeded tiller longevity, tiller longevity drove turnover within the bud bank. Tiller population dynamics, more than bud production per tiller, determined the differential contribution of tiller types to the bud bank. Nassella viridula had higher bud production per tiller, a consistent annual tiller recruitment density, and greater longevity of buds on senesced and flowering tillers than H. comata. CONCLUSIONS: Co-occurring C3 caespitose grasses had similar bud-bank and tiller dynamics contributing to genet persistence but differed in bud characteristics that could affect genet longevity and species coexistence.


Subject(s)
Poaceae/physiology , Grassland , Poaceae/growth & development , Reproduction , Seasons , South Dakota
4.
Am J Bot ; 98(8): 1293-8, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21788531

ABSTRACT

PREMISE OF THE STUDY: Perennial grasses maintain aboveground tiller populations through vegetative reproduction via belowground buds and sexual reproduction via seed. The maintenance of a bud bank has important demographic consequences for perennial grasses. A tradeoff between these reproductive modes would be expected for a plant with limited resource availability. However, the ontogeny of the tiller could affect its ability to allocate between these two modes of reproduction. METHODS: Vegetative bud production and dynamics and tiller production were examined biweekly through an annual cycle on vegetative and flowering tillers of Andropogon gerardii. KEY RESULTS: Andropogon gerardii maintains a large reserve of dormant buds. Although vegetative and flowering tillers had similar bud phenology, flowering tillers produced larger numbers of buds of larger size, and transitioned a larger proportion of their buds to tiller, than did vegetative tillers. Therefore, a negative consequence of sexual reproduction on vegetative reproduction was not evident at the tiller level. A size threshold for floral induction likely exists that results in flowering tillers having more buds per tiller than vegetative tillers. The increased bud outgrowth of flowering tillers could be a result of their larger bud size or weaker apical dominance as compared to vegetative tillers. CONCLUSIONS: Plant development can place significant constraints on tradeoffs between the reproductive modes in perennial grasses and could affect their plasticity in plant reproductive allocation. Differences in developmental phenology and bud production between flowering and vegetative tillers may influence grass responses to environmental changes such as altered precipitation regimes or resource availability.


Subject(s)
Andropogon/growth & development , Flowers/growth & development , Reproduction, Asexual , Andropogon/physiology , Flowers/physiology , Meristem/growth & development , Meristem/physiology , Phenotype , Rhizome/growth & development , Seasons , Seeds/growth & development , Seeds/physiology , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL