Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Microbiologyopen ; 12(5): e1386, 2023 10.
Article in English | MEDLINE | ID: mdl-37877655

ABSTRACT

Lichens are symbiotic associations consisting of a photobiont (algae or cyanobacteria) and a mycobiont (fungus), which together generate a variety of unique secondary metabolites. To access this biosynthetic potential for biotechnological applications, deeper insights into the biosynthetic pathways and corresponding gene clusters are necessary. Here, we provide a comparative view of the biosynthetic gene clusters of three lichen mycobionts derived from Hypogymnia physodes, Hypogymnia tubulosa, and Parmelia sulcata. In addition, we present a high-quality PacBio metagenome of Parmelia sulcata, from which we extracted the mycobiont bin containing 214 biosynthetic gene clusters. Most biosynthetic gene clusters in these genomes were associated with T1PKSs, followed by NRPSs and terpenes. This study focused on biosynthetic gene clusters related to polyketide synthesis. Based on ketosynthase homology, we identified nine highly syntenic clusters present in all three species. Among the four clusters belonging to nonreducing PKSs, two are putatively linked to lichen substances derived from orsellinic acid (orcinol depsides and depsidones, e.g., lecanoric acid, physodic acid, lobaric acid), one to compounds derived from methylated forms of orsellinic acid (beta orcinol depsides, e.g., atranorin), and one to melanins. Five clusters with orthologs in all three species are linked to reducing PKSs. Our study contributes to sorting and dereplicating the vast PKS diversity found in lichenized fungi. High-quality sequences of biosynthetic gene clusters of these three common species provide a foundation for further exploration into biotechnological applications and the molecular evolution of lichen substances.


Subject(s)
Lichens , Polyketide Synthases , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Depsides/metabolism , Synteny , Lichens/genetics , Lichens/microbiology , Fungi/genetics , Multigene Family , Phylogeny
2.
J Fungi (Basel) ; 9(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37233257

ABSTRACT

Lichens are symbiotic associations consisting of a photobiont (algae or cyanobacteria) and a mycobiont (fungus). They are known to produce a variety of unique secondary metabolites. To access this biosynthetic potential for biotechnological applications, deeper insights into the biosynthetic pathways and corresponding gene clusters are necessary. Here we provide a comprehensive view of the biosynthetic gene clusters of all organisms comprising a lichen thallus: fungi, green algae, and bacteria. We present two high-quality PacBio metagenomes, in which we identified a total of 460 biosynthetic gene clusters. Lichen mycobionts yielded 73-114 clusters, other lichen associated ascomycetes 8-40, green algae of the genus Trebouxia 14-19, and lichen-associated bacteria 101-105 clusters. The mycobionts contained mainly T1PKSs, followed by NRPSs, and terpenes; Trebouxia reads harbored mainly clusters linked to terpenes, followed by NRPSs and T3PKSs. Other lichen-associated ascomycetes and bacteria contained a mix of diverse biosynthetic gene clusters. In this study, we identified for the first time the biosynthetic gene clusters of entire lichen holobionts. The yet untapped biosynthetic potential of two species of the genus Hypogymnia is made accessible for further research.

3.
Front Microbiol ; 14: 1067906, 2023.
Article in English | MEDLINE | ID: mdl-36950169

ABSTRACT

Introduction: Trees interact with fungi in mutualistic, saprotrophic, and pathogenic relationships. With their extensive aboveground and belowground structures, trees provide diverse habitats for fungi. Thus, tree species identity is an important driver of fungal community composition in forests. Methods: Here we investigate how forest habitat (bark surface vs. soil) and tree species identity (deciduous vs. coniferous) affect fungal communities in two Central European forests. We assess differences and interactions between fungal communities associated with bark surfaces and soil, in forest plots dominated either by Fagus sylvatica, Picea abies, or Pinus sylvestris in two study regions in southwestern and northeastern Germany. Results: ITS metabarcoding yielded 3,357 fungal amplicon sequence variants (ASVs) in the northern and 6,088 in the southern region. Overall, soil communities were 4.7 times more diverse than bark communities. Habitat type explained 48-69% of the variation in alpha diversity, while tree species identity explained >1-3%. NMDS ordinations showed that habitat type and host tree species structured the fungal communities. Overall, few fungal taxa were shared between habitats, or between tree species, but the shared taxa were highly abundant. Network analyses, based on co-occurrence patterns, indicate that aboveground and belowground communities form distinct subnetworks. Discussion: Our study suggests that habitat (bark versus soil) and tree species identity are important factors structuring fungal communities in temperate European forests. The aboveground (bark-associated) fungal community is currently poorly known, including a high proportion of reads assigned to "unknown Ascomycota" or "unknown Dothideomycetes." The role of bark as a habitat and reservoir of unique fungal diversity in forests has been underestimated.

4.
Mol Ecol ; 32(23): 6619-6630, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35398946

ABSTRACT

Holobionts are dynamic ecosystems that may respond to abiotic drivers with compositional changes. Uncovering elevational diversity patterns within these microecosystems can further our understanding of community-environment interactions. Here, we assess how the major components of lichen holobionts-fungal hosts, green algal symbionts, and the bacterial community-collectively respond to an elevational gradient. We analyse populations of two lichen symbioses, Umbilicaria pustulata and U. hispanica, along an elevational gradient spanning 2100 altitudinal metres and covering three major biomes. Our study shows (i) discontinuous genomic variation in fungal hosts with one abrupt genomic differentiation within each of the two host species, (ii) altitudinally structured bacterial communities with pronounced turnover within and between hosts, and (iii) altitude-specific presence of algal symbionts. Alpha diversity of bacterial communities decreased with increasing elevation. A marked turnover in holobiont diversity occurred across two altitudinal belts: at 11°C-13°C average annual temperature (here: 800-1200 m a.s.l.), and at 7°C-9°C average annual temperature (here: 1500-1800 m a.s.l.). The two observed zones mark a clustering of distribution limits and community shifts. The three ensuing altitudinal classes, that is, the most frequent combinations of species in holobionts, approximately correspond to the Mediterranean, cool-temperate, and alpine climate zones. We conclude that multitrophic microecosystems, such as lichen holobionts, respond with concerted compositional changes to climatic factors that also structure communities of macroorganisms, for example, vascular plants.


Subject(s)
Lichens , Lichens/genetics , Lichens/microbiology , Ecosystem , Environment , Altitude , Bacteria/genetics
5.
Sci Rep ; 12(1): 15884, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151124

ABSTRACT

Lichen-forming fungi establish stable symbioses with green algae or cyanobacteria. Many species have broad distributions, both in geographic and ecological space, making them ideal subjects to study organism-environment interactions. However, little is known about the specific mechanisms that contribute to environmental adaptation in lichen-forming fungi. The circadian clock provides a well-described mechanism that contributes to regional adaptation across a variety of species, including fungi. Here, we identify the putative circadian clock components in phylogenetically divergent lichen-forming fungi. The core circadian genes (frq, wc-1, wc-2, frh) are present across the Fungi, including 31 lichen-forming species, and their evolutionary trajectories mirror overall fungal evolution. Comparative analyses of the clock genes indicate conserved domain architecture among lichen- and non-lichen-forming taxa. We used RT-qPCR to examine the core circadian loop of two unrelated lichen-forming fungi, Umbilicaria pustulata (Lecanoromycetes) and Dermatocarpon miniatum (Eurotiomycetes), to determine that the putative frq gene is activated in a light-dependent manner similar to the model fungus Neurospora crassa. Together, these results demonstrate that lichen-forming fungi retain functional light-responsive mechanisms, including a functioning circadian clock. Our findings provide a stepping stone into investigating the circadian clock in the lichen symbiosis, e.g. its role in adaptation, and in synchronizing the symbiotic interaction.


Subject(s)
Circadian Clocks , Lichens , Neurospora crassa , Circadian Clocks/genetics , Circadian Rhythm/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Humans , Lichens/genetics , Lichens/metabolism , Neurospora crassa/genetics
6.
Microbiol Spectr ; 10(4): e0010922, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35867425

ABSTRACT

Natural products of lichen-forming fungi are structurally diverse and have a variety of medicinal properties. Despite this, they have limited implementation in industry mostly because the corresponding genes are unknown for most of their natural products. Here, we implement a long-read sequencing and bioinformatic approach to identify the putative biosynthetic gene cluster of the bioactive natural product gyrophoric acid (GA). Using 15 high-quality genomes representing nine GA-producing species of the lichen-forming fungal genus Umbilicaria, we identify the most likely GA cluster and investigate the cluster gene organization and composition across the nine species. Our results show that GA clusters are promiscuous within Umbilicaria, and only three genes are conserved across species, including the polyketide synthase (PKS) gene. In addition, our results suggest that the same cluster codes for different, but structurally similar compounds, namely, GA, umbilicaric-, and hiascic acid, bringing new evidence that lichen metabolite diversity is also generated through regulatory mechanisms at the molecular level. Ours is the first study to identify the most likely GA cluster and, thus, provides essential information to open new avenues for biotechnological approaches to producing and modifying GA and similar lichen-derived compounds. GA PKS is the first tridepside PKS to be identified. IMPORTANCE The implementation of natural products in the pharmaceutical industry relies on the possibility of modifying the natural product (NP) pathway to optimize yields and pharmacological effects. Characterization of genes and pathways underlying natural product biosynthesis is a major bottleneck for exploiting the medicinal properties of the natural products. Genome mining is a promising and relatively cost- and time-effective approach to utilize unexplored NP resources for drug discovery. In this study, we identify the most likely gene cluster for the lichen-forming fungal depside gyrophoric acid in nine Umbilicaria species. This compound shows cytotoxic and antiproliferative properties against several cancer cell lines and is also a broad-spectrum antimicrobial agent. This information paves the way for generating GA analogs with modified properties by selective activation/deactivation of genes.


Subject(s)
Ascomycota , Biological Products , Lichens , Ascomycota/genetics , Benzoates , Biological Products/pharmacology , Lichens/genetics , Lichens/microbiology , Multigene Family , Phylogeny , Polyketide Synthases/genetics , Polyketide Synthases/metabolism
7.
Environ Microbiol ; 23(11): 6637-6650, 2021 11.
Article in English | MEDLINE | ID: mdl-34697892

ABSTRACT

Viruses can play critical roles in symbioses by initiating horizontal gene transfer, affecting host phenotypes, or expanding their host's ecological niche. However, knowledge of viral diversity and distribution in symbiotic organisms remains elusive. Here we use deep-sequenced metagenomic DNA (PacBio Sequel II; two individuals), paired with a population genomics approach (Pool-seq; 11 populations, 550 individuals) to understand viral distributions in the lichen Umbilicaria phaea. We assess (i) viral diversity in lichen thalli, (ii) putative viral hosts (fungi, algae, bacteria) and (iii) viral distributions along two replicated elevation gradients. We identified five novel viruses, showing 28%-40% amino acid identity to known viruses. They tentatively belong to the families Caulimoviridae, Myoviridae, Podoviridae and Siphoviridae. Our analysis suggests that the Caulimovirus is associated with green algal photobionts (Trebouxia) of the lichen, and the remaining viruses with bacterial hosts. We did not detect viral sequences in the mycobiont. Caulimovirus abundance decreased with increasing elevation, a pattern reflected by a specific algal lineage hosting this virus. Bacteriophages showed population-specific patterns. Our work provides the first comprehensive insights into viruses associated with a lichen holobiont and suggests an interplay of viral hosts and environment in structuring viral distributions.


Subject(s)
Ascomycota , Bacteriophages , Lichens , Ascomycota/genetics , Bacteriophages/genetics , Genome, Viral/genetics , Lichens/genetics , Lichens/microbiology , Metagenome , Phylogeny , Symbiosis
8.
Proc Biol Sci ; 287(1924): 20192311, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32228406

ABSTRACT

Keystone mutualisms, such as corals, lichens or mycorrhizae, sustain fundamental ecosystem functions. Range dynamics of these symbioses are, however, inherently difficult to predict because host species may switch between different symbiont partners in different environments, thereby altering the range of the mutualism as a functional unit. Biogeographic models of mutualisms thus have to consider both the ecological amplitudes of various symbiont partners and the abiotic conditions that trigger symbiont replacement. To address this challenge, we here investigate 'symbiont turnover zones'--defined as demarcated regions where symbiont replacement is most likely to occur, as indicated by overlapping abundances of symbiont ecotypes. Mapping the distribution of algal symbionts from two species of lichen-forming fungi along four independent altitudinal gradients, we detected an abrupt and consistent ß-diversity turnover suggesting parallel niche partitioning. Modelling contrasting environmental response functions obtained from latitudinal distributions of algal ecotypes consistently predicted a confined altitudinal turnover zone. In all gradients this symbiont turnover zone is characterized by approximately 12°C average annual temperature and approximately 5°C mean temperature of the coldest quarter, marking the transition from Mediterranean to cool temperate bioregions. Integrating the conditions of symbiont turnover into biogeographic models of mutualisms is an important step towards a comprehensive understanding of biodiversity dynamics under ongoing environmental change.


Subject(s)
Climate , Ecosystem , Symbiosis
9.
Genome Biol Evol ; 12(4): 309-324, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32163141

ABSTRACT

Lichens are valuable models in symbiosis research and promising sources of biosynthetic genes for biotechnological applications. Most lichenized fungi grow slowly, resist aposymbiotic cultivation, and are poor candidates for experimentation. Obtaining contiguous, high-quality genomes for such symbiotic communities is technically challenging. Here, we present the first assembly of a lichen holo-genome from metagenomic whole-genome shotgun data comprising both PacBio long reads and Illumina short reads. The nuclear genomes of the two primary components of the lichen symbiosis-the fungus Umbilicaria pustulata (33 Mb) and the green alga Trebouxia sp. (53 Mb)-were assembled at contiguities comparable to single-species assemblies. The analysis of the read coverage pattern revealed a relative abundance of fungal to algal nuclei of ∼20:1. Gap-free, circular sequences for all organellar genomes were obtained. The bacterial community is dominated by Acidobacteriaceae and encompasses strains closely related to bacteria isolated from other lichens. Gene set analyses showed no evidence of horizontal gene transfer from algae or bacteria into the fungal genome. Our data suggest a lineage-specific loss of a putative gibberellin-20-oxidase in the fungus, a gene fusion in the fungal mitochondrion, and a relocation of an algal chloroplast gene to the algal nucleus. Major technical obstacles during reconstruction of the holo-genome were coverage differences among individual genomes surpassing three orders of magnitude. Moreover, we show that GC-rich inverted repeats paired with nonrandom sequencing error in PacBio data can result in missing gene predictions. This likely poses a general problem for genome assemblies based on long reads.


Subject(s)
Ascomycota/genetics , Genome, Fungal , Lichens/genetics , Metagenome , Symbiosis , Ascomycota/growth & development , Lichens/growth & development , Phylogeny
10.
Microorganisms ; 7(9)2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31505790

ABSTRACT

Anthropogenic disturbances can have strong impacts on lichen communities, as well as on individual species of lichenized fungi. Traditionally, lichen monitoring studies are based on the presence and abundance of fungal morphospecies. However, the photobionts, as well photobiont mycobiont interactions also contribute to the structure, composition, and resilience of lichen communities. Here we assess the genetic diversity and interaction patterns of algal and fungal partners in lichen communities along an anthropogenic disturbance gradient in Bialowieza Forest (Poland). We sampled a total of 224 lichen thalli in a protected, a managed, and a disturbed area of the forest, and sequenced internal transcribed spacer (ITS) ribosomal DNA (rDNA) of both, fungal and algal partners. Sequence clustering using a 97% similarity threshold resulted in 46 fungal and 23 green algal operational taxonomic units (OTUs). Most of the recovered photobiont OTUs (14 out of 23) had no similar hit in the NCBI-BLAST search, suggesting that even in well studied regions, such as central Europe, a lot of photobiont diversity is yet undiscovered. If a mycobiont was present at more than one site, it was typically associated with the same photobiont OTU(s). Generalist species, i.e., taxa that associate with multiple symbiont partners, occurred in all three disturbance regimes, suggesting that such taxa have few limitations in colonizing or persisting in disturbed areas. Trebouxia jamesii associated with 53% of the fungal OTUs, and was generally the most common photobiont OTU in all areas, implying that lichens that associate with this symbiont are not limited by the availability of compatible photobionts in Central European forests, regardless of land use intensity.

11.
Sci Rep ; 8(1): 17229, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30446710

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

12.
Sci Rep ; 8(1): 8624, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29872090

ABSTRACT

The implementation of HTS (high-throughput sequencing) approaches is rapidly changing our understanding of the lichen symbiosis, by uncovering high bacterial and fungal diversity, which is often host-specific. Recently, HTS methods revealed the presence of multiple photobionts inside a single thallus in several lichen species. This differs from Sanger technology, which typically yields a single, unambiguous algal sequence per individual. Here we compared HTS and Sanger methods for estimating the diversity of green algal symbionts within lichen thalli using 240 lichen individuals belonging to two species of lichen-forming fungi. According to HTS data, Sanger technology consistently yielded the most abundant photobiont sequence in the sample. However, if the second most abundant photobiont exceeded 30% of the total HTS reads in a sample, Sanger sequencing generally failed. Our results suggest that most lichen individuals in the two analyzed species, Lasallia hispanica and L. pustulata, indeed contain a single, predominant green algal photobiont. We conclude that Sanger sequencing is a valid approach to detect the dominant photobionts in lichen individuals and populations. We discuss which research areas in lichen ecology and evolution will continue to benefit from Sanger sequencing, and which areas will profit from HTS approaches to assessing symbiont diversity.


Subject(s)
Chlorophyta/classification , Chlorophyta/genetics , DNA Barcoding, Taxonomic/methods , High-Throughput Nucleotide Sequencing/methods , Lichens/growth & development , Metagenomics/methods , Sequence Analysis, DNA/methods , Ascomycota/growth & development , Chlorophyta/growth & development , Symbiosis
13.
New Phytol ; 217(1): 277-289, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28892165

ABSTRACT

An understanding of how biotic interactions shape species' distributions is central to predicting host-symbiont responses under climate change. Switches to locally adapted algae have been proposed to be an adaptive strategy of lichen-forming fungi to cope with environmental change. However, it is unclear how lichen photobionts respond to environmental gradients, and whether they play a role in determining the fungal host's upper and lower elevational limits. Deep-coverage Illumina DNA metabarcoding was used to track changes in the community composition of Trebouxia algae associated with two phylogenetically closely related, but ecologically divergent fungal hosts along a steep altitudinal gradient in the Mediterranean region. We detected the presence of multiple Trebouxia species in the majority of thalli. Both altitude and host genetic identity were strong predictors of photobiont community assembly in these two species. The predominantly clonally dispersing fungus showed stronger altitudinal structuring of photobiont communities than the sexually reproducing host. Elevation ranges of the host were not limited by the lack of compatible photobionts. Our study sheds light on the processes guiding the formation and distribution of specific fungal-algal combinations in the lichen symbiosis. The effect of environmental filtering acting on both symbiotic partners appears to shape the distribution of lichens.


Subject(s)
Chlorophyta/microbiology , Fungi/physiology , Lichens/microbiology , Symbiosis , Environment
14.
Microb Ecol ; 75(2): 468-478, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28785816

ABSTRACT

Using terrestrial model ecosystems (TMEs), we investigated how reduced moisture conditions impact soil fungal communities from a temperate grassland over the course of an entire season. Starting at about 65% of the soil's maximum water holding capacity (WHCmax), TME soils were adjusted to three moisture levels for 15 weeks: 70% WHCmax, approximating starting conditions, 50% WHCmax, and 30% WHCmax, representing reduced moisture conditions. Diversity and abundances of soil fungi at the start and at the end of the experiment were characterized using Illumina meta-barcoding. Community diversity at the end of the experiment did not differ between experimental moisture levels and was comparable to diversity measures from the field. However, fungal communities did change compositionally in both abundances and presence/absence of species. Analyzing class-level and individual contributions of fungi to these changes revealed that only a minor portion reacted significantly, indicating that most compositional change was likely driven by many consistent small-scale shifts in presence/absences or abundances. Together, our results show that prolonged reduction in soil moisture conditions will trigger compositional changes in soil fungal communities but not necessarily change overall diversity. We highlight the cumulative contribution of minor but consistent changes among community members, as opposed to significant responses of individual species. We also detected a strong general experimental effect on soil fungi that are moved from the field to experimental TMEs, suggesting the importance of acclimatization effects in these communities under laboratory conditions.


Subject(s)
Fungi/isolation & purification , Soil Microbiology , Biodiversity , Droughts , Ecosystem , Fungi/classification , Fungi/genetics , Grassland , Mycobiome , Phylogeny , Seasons , Soil/chemistry , Water/analysis
15.
Sci Rep ; 7(1): 14881, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29097759

ABSTRACT

The metagenome skimming approach, i.e. low coverage shotgun sequencing of multi-species assemblages and subsequent reconstruction of individual genomes, is increasingly used for in-depth genomic characterization of ecological communities. This approach is a promising tool for reconstructing genomes of facultative symbionts, such as lichen-forming fungi, from metagenomic reads. However, no study has so far tested accuracy and completeness of assemblies based on metagenomic sequences compared to assemblies based on pure culture strains of lichenized fungi. Here we assembled the genomes of Evernia prunastri and Pseudevernia furfuracea based on metagenomic sequences derived from whole lichen thalli. We extracted fungal contigs using two different taxonomic binning methods, and performed gene prediction on the fungal contig subsets. We then assessed quality and completeness of the metagenome-based assemblies using genome assemblies as reference which are based on pure culture strains of the two fungal species. Our comparison showed that we were able to reconstruct fungal genomes from uncultured lichen thalli, and also cover most of the gene space (86-90%). Metagenome skimming will facilitate genome mining, comparative (phylo)genomics, and population genetics of lichen-forming fungi by circumventing the time-consuming, sometimes unfeasible, step of aposymbiotic cultivation.


Subject(s)
DNA, Fungal/genetics , Genome, Fungal , Lichens/genetics , Lichens/classification , Metagenomics , Sequence Analysis, DNA , Transcriptome
16.
PLoS One ; 12(7): e0180284, 2017.
Article in English | MEDLINE | ID: mdl-28700682

ABSTRACT

Pertusarialean lichens include more than 300 species belonging to several independent phylogenetic lineages. Only some of these phylogenetic clades have been comprehensively sampled for molecular data, and formally described as genera. Here we present a taxonomic treatment of a group of pertusarialean lichens formerly known as "Pertusaria amara-group", "Monomurata-group", or "Variolaria-group", which includes widespread and well-known taxa such as P. amara, P. albescens, or P. ophthalmiza. We generated a 6-locus data set with 79 OTUs representing 75 species. The distinction of the Variolaria clade is supported and consequently, the resurrection of the genus Lepra is followed. Thirty-five new combinations into Lepra are proposed and the new species Lepra austropacifica is described from mangroves in the South Pacific. Lepra is circumscribed to include species with disciform ascomata, a weakly to non-amyloid hymenial gel, strongly amyloid asci without clear apical amyloid structures, containing 1 or 2, single-layered, thin-walled ascospores. Chlorinated xanthones are not present, but thamnolic and picrolichenic acids occur frequently, as well as orcinol depsides. Seventy-one species are accepted in the genus. Although the distinction of the genus from Pertusaria is strongly supported, the relationships of Lepra remain unresolved and the genus is tentatively placed in Pertusariales incertae sedis.


Subject(s)
Ascomycota/genetics , Ascomycota/classification , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Lichens/microbiology , Phylogeny , Sequence Analysis, DNA
17.
BMC Evol Biol ; 17(1): 93, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28359299

ABSTRACT

BACKGROUND: Many fungal species occur across a variety of habitats. Particularly lichens, fungi forming symbioses with photosynthetic partners, have evolved remarkable tolerances for environmental extremes. Despite their ecological importance and ubiquity, little is known about the genetic basis of adaption in lichen populations. Here we studied patterns of genome-wide differentiation in the lichen-forming fungus Lasallia pustulata along an altitudinal gradient in the Mediterranean region. We resequenced six populations as pools and identified highly differentiated genomic regions. We then detected gene-environment correlations while controlling for shared population history and pooled sequencing bias, and performed ecophysiological experiments to assess fitness differences of individuals from different environments. RESULTS: We detected two strongly differentiated genetic clusters linked to Mediterranean and temperate-oceanic climate, and an admixture zone, which coincided with the transition between the two bioclimates. High altitude individuals showed ecophysiological adaptations to wetter and more shaded conditions. Highly differentiated genome regions contained a number of genes associated with stress response, local environmental adaptation, and sexual reproduction. CONCLUSIONS: Taken together our results provide evidence for a complex interplay between demographic history and spatially varying selection acting on a number of key biological processes, suggesting a scenario of ecological speciation.


Subject(s)
Ascomycota/genetics , Ascomycota/physiology , Lichens/genetics , Lichens/physiology , Adaptation, Physiological , Ascomycota/classification , Ecosystem , Genome, Fungal , Genomics , Lichens/classification , Mediterranean Region , Symbiosis
18.
New Phytol ; 214(1): 317-329, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27918622

ABSTRACT

Both macroclimate and evolutionary events may influence symbiont association and diversity patterns. Here we assess how climatic factors and evolutionary events shape fungal-algal association patterns in the widely distributed lichen-forming fungal genus Protoparmelia. Multilocus phylogenies of fungal and algal partners were generated using 174 specimens. Coalescent-based species delimitation analysis suggested that 23 fungal hosts are associating with 20 algal species. Principal component analysis (PCA) was performed to infer how fungal-algal association patterns varied with climate. Fungi associated with one to three algal partners whereas algae accepted one to five fungal partners. Both fungi and algae were more specific, associating with fewer partners, in the warmer climates. Interaction with more than one partner was more frequent in cooler climates for both the partners. Cophylogenetic analyses suggest congruent fungal-algal phylogenies. Host switch was a more common event in warm climates, whereas failure of the photobiont to diverge with its fungal host was more frequent in cooler climates. We conclude that both environmental factors and evolutionary events drive fungal and algal evolution in Protoparmelia. The processes leading to phylogenetic congruence of fungi and algae are different in different macrohabitats in our study system. Hence, closely related species inhabiting diverse habitats may follow different evolutionary pathways.


Subject(s)
Climate , Fungi/physiology , Lichens/microbiology , Symbiosis , Phylogeny , Principal Component Analysis , Sequence Analysis, DNA , Species Specificity
19.
PLoS One ; 10(5): e0124625, 2015.
Article in English | MEDLINE | ID: mdl-25932996

ABSTRACT

Species recognition in lichen-forming fungi has been a challenge because of unsettled species concepts, few taxonomically relevant traits, and limitations of traditionally used morphological and chemical characters for identifying closely related species. Here we analyze species diversity in the cosmopolitan genus Protoparmelia s.l. The ~25 described species in this group occur across diverse habitats from the boreal-arctic/alpine to the tropics, but their relationship to each other remains unexplored. In this study, we inferred the phylogeny of 18 species currently assigned to this genus based on 160 specimens and six markers: mtSSU, nuLSU, ITS, RPB1, MCM7, and TSR1. We assessed the circumscription of species-level lineages in Protoparmelia s. str. using two coalescent-based species delimitation methods--BP&P and spedeSTEM. Our results suggest the presence of a tropical and an extra-tropical lineage, and eleven previously unrecognized distinct species-level lineages in Protoparmelia s. str. Several cryptic lineages were discovered as compared to phenotype-based species delimitation. Many of the putative species are supported by geographic evidence.


Subject(s)
Ascomycota/physiology , Biodiversity , Lichens/microbiology , Base Sequence , Bayes Theorem , Cell Nucleus/genetics , Genetic Loci , Likelihood Functions , Models, Genetic , Phylogeny , Reproducibility of Results , Species Specificity
20.
Mol Ecol ; 24(1): 235-48, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25443313

ABSTRACT

Micro-organisms associated with plants and animals affect host fitness, shape community structure and influence ecosystem properties. Climate change is expected to influence microbial communities, but their reactions are not well understood. Host-associated micro-organisms are influenced by the climate reactions of their hosts, which may undergo range shifts due to climatic niche tracking, or may be actively relocated to mitigate the effects of climate change. We used a common-garden experiment and rDNA metabarcoding to examine the effect of host relocation and high-latitude warming on the complex fungal endophytic microbiome associated with leaves of an ecologically dominant boreal forest tree (Populus balsamifera L.). We also considered the potential effects of poplar genetic identity in defining the reactions of the microbiome to the treatments. The relocation of hosts to the north increased the diversity of the microbiome and influenced its structure, with results indicating enemy release from plausible pathogens. High-latitude warming decreased microbiome diversity in comparison with natural northern conditions. The warming also caused structural changes, which made the fungal communities distinct in comparison with both low-latitude and high-latitude natural communities, and increased the abundance of plausible pathogens. The reactions of the microbiome to relocation and warming were strongly dependent on host genetic identity. This suggests that climate change effects on host-microbiome systems may be mediated by the interaction of environmental factors and the population genetic processes of the hosts.


Subject(s)
Fungi/classification , Global Warming , Microbiota , Populus/microbiology , Biodiversity , Canada , Endophytes/classification , Linear Models , Plant Leaves/microbiology , Trees/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...