Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Metab Eng ; 83: 110-122, 2024 May.
Article in English | MEDLINE | ID: mdl-38561148

ABSTRACT

Especially for the production of artificial, difficult to express molecules a further development of the CHO production cell line is required to keep pace with the continuously increasing demands. However, the identification of novel targets for cell line engineering to improve CHO cells is a time and cost intensive process. Since plasma cells are evolutionary optimized for a high antibody expression in mammals, we performed a comprehensive multi-omics comparison between CHO and plasma cells to exploit optimized cellular production traits. Comparing the transcriptome, proteome, miRNome, surfaceome and secretome of both cell lines identified key differences including 392 potential overexpression targets for CHO cell engineering categorized in 15 functional classes like transcription factors, protein processing or secretory pathway. In addition, 3 protein classes including 209 potential knock-down/out targets for CHO engineering were determined likely to affect aggregation or proteolysis. For production phenotype engineering, several of these novel targets were successfully applied to transient and transposase mediated overexpression or knock-down strategies to efficiently improve productivity of CHO cells. Thus, substantial improvement of CHO productivity was achieved by taking nature as a blueprint for cell line engineering.


Subject(s)
Cricetulus , Animals , CHO Cells , Plasma Cells/metabolism , Proteome/metabolism , Proteome/genetics , Transcriptome , Metabolic Engineering , Multiomics
2.
Biotechnol Bioeng ; 121(3): 942-958, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38037755

ABSTRACT

Although small extracellular vesicles (sEVs) have promising features as an emerging therapeutic format for a broad spectrum of applications, for example, blood-brain-barrier permeability, low immunogenicity, and targeted delivery, economic manufacturability will be a crucial factor for the therapeutic applicability of sEVs. In the past, bioprocess optimization and cell line engineering improved titers of classical biologics multifold. We therefore performed a design of experiments (DoE) screening to identify beneficial bioprocess conditions for sEV production in HEK293F suspension cells. Short-term hyperthermia at 40°C elevated volumetric productivity 5.4-fold while sEVs displayed improved exosomal characteristics and cells retained >90% viability. Investigating the effects of hyperthermia via transcriptomics and proteomics analyses, an expectable, cellular heat-shock response was found together with an upregulation of many exosome biogenesis and vesicle trafficking related molecules, which could cause the productivity boost in tandem with heat shock proteins (HSPs), like HSP90 and HSC70. Because of these findings, a selection of 44 genes associated with exosome biogenesis, vesicle secretion machinery, or heat-shock response was screened for their influence on sEV production. Overexpression of six genes, CHMP1A, CHMP3, CHMP5, VPS28, CD82, and EZR, significantly increased both sEV secretion and titer, making them suitable targets for cell line engineering.


Subject(s)
Extracellular Vesicles , Humans , HEK293 Cells , Extracellular Vesicles/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism
3.
Biotechnol Bioeng ; 121(4): 1355-1365, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38079069

ABSTRACT

N-linked glycosylation is one of the most important post-translational modifications of monoclonal antibodies (mAbs) and is considered to be a critical quality attribute (CQA), as the glycan composition often has immunomodulatory effects. Since terminal galactose residues of mAbs can affect antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytolysis (CDC) activation, serum half-life, and antiviral activity it has to be monitored, controlled and modulated to ensure therapeutic effects. The ability of small noncoding microRNAs (miRNAs) to modulate glycosylation in Chinese hamster ovary (CHO) production cells was recently reported establishing miRNAs as engineering tools for modulation of protein glycosylation. In this study, we report the characterization and validation of miRNAs as engineering tools for increased (mmu-miR-452-5p, mmu-miR-193b-3p) or decreased (mmu-miR-7646-5p, mmu-miR-7243-3p, mmu-miR-1668, mmu-let-7c-1-3p, mmu-miR-7665-3p, mmu-miR-6403) degree of galactosylation. Furthermore, the biological mode of action regulating gene expression of the galactosylation pathway was characterized as well as their influence on bioprocess-related parameters. Most important, stable plasmid-based overexpression of these miRNAs represents a versatile tool for engineering N-linked galactosylation to achieve favorable phenotypes in cell lines for biopharmaceutical production.


Subject(s)
MicroRNAs , Animals , Cricetinae , MicroRNAs/genetics , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , CHO Cells , Cricetulus , Glycosylation
4.
N Biotechnol ; 79: 91-99, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38154615

ABSTRACT

Antibodies are potent biopharmaceuticals used to treat severe diseases, including cancers. During the past decade, more complex modalities have been developed including bispecific T-cell engager (BiTE®) molecules, e.g. by Amgen. However, non-natural and complex molecule formats often prove to be difficult-to-express (DTE), which is the case for BiTE® molecules. Due to the growing importance of multispecific modalities such as half-life extended (HLE) BiTE® and HLE dual-targeting bispecific T-cell engager (dBiTE) molecules, this artificial class of therapeutic proteins was investigated for molecular bottlenecks in stable production cell lines, by analyzing all relevant steps of recombinant protein production. As a result, drastically reduced intracellular BiTE® molecule-encoding mRNA levels were identified as a potential production bottleneck. Using in vitro transcription (IVT), the transcription rate of the BiTE® molecule-encoding mRNA was identified as the root cause for reduced amounts of intracellular mRNA. In an attempt to improve the transcription rate of a BiTE® molecule, it could be demonstrated that the artificial and special structure of the BiTE® molecule was not the rate limiting step for reduced IVT rate. However, modulation of the primary DNA sequence led to significant improvement of IVT rate. The analyses presented provide insight into the HLE BiTE® / HLE d(BiTE®) class of DTE proteins and perhaps into other classes of DTE proteins, and therefore may lead to identification of further production bottlenecks and optimization strategies to overcome manufacturability challenges associated with various complex therapeutics.


Subject(s)
Antibodies, Bispecific , Neoplasms , Humans , T-Lymphocytes/metabolism , Neoplasms/metabolism , Recombinant Proteins , RNA, Messenger/metabolism
5.
N Biotechnol ; 79: 100-110, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38154614

ABSTRACT

Chinese hamster ovary (CHO) cells are the most commonly used mammalian cell line for the production of complex therapeutic glycoproteins. As CHO cells have evolved as part of a multicellular organism, they harbor many cellular functions irrelevant for their application as production hosts in industrial bioprocesses. Consequently, CHO cells have been the target for numerous genetic engineering efforts in the past, but a tailored host cell chassis holistically optimized for its specific task in a bioreactor is still missing. While the concept of genome reduction has already been successfully applied to bacterial production cells, attempts to create higher eukaryotic production hosts exhibiting reduced genomes have not been reported yet. Here, we present the establishment and application of a large-scale genome deletion strategy for targeted excision of large genomic regions in CHO cells. We demonstrate the feasibility of genome reduction in CHO cells using optimized CRISPR/Cas9 based experimental protocols targeting large non-essential genomic regions with high efficiency. Achieved genome deletions of non-essential genetic regions did not introduce negative effects on bioprocess relevant parameters, although we conducted the largest reported genomic excision of 864 kilobase pairs in CHO cells so far. The concept presented serves as a directive to accelerate the development of a significantly genome-reduced CHO host cell chassis paving the way for a next generation of CHO cell factories.


Subject(s)
Genetic Engineering , Genome , Cricetinae , Animals , Cricetulus , CHO Cells , Genome/genetics
6.
Metab Eng ; 77: 53-63, 2023 05.
Article in English | MEDLINE | ID: mdl-36906118

ABSTRACT

N-linked glycosylation is a crucial post-translational modification of many biopharmaceuticals, including monoclonal antibodies (mAbs), capable of modifying their biological effect in patients and thus considered as a critical quality attribute (CQA). However, expression of desired and consistent glycosylation patterns remains a constant challenge for the biopharmaceutical industry and constitutes the need for tools to engineer glycosylation. Small non-coding microRNAs (miRNAs) are known regulators of entire gene networks and have therefore the potential of being used as tools for modulation of glycosylation pathways and for glycoengineering. Here, we demonstrate that novel identified natural miRNAs are capable of altering N-linked glycosylation patterns on mAbs expressed in Chinese hamster ovary (CHO) cells. We established a workflow for a functional high-throughput screening of a complete miRNA mimic library and identified 82 miRNA sequences affecting various moieties including galactosylation, sialylation, and α-1,6 linked core-fucosylation, an important glycan feature influencing antibody-dependent cytotoxicity (ADCC). Subsequent validation shed light on the intra-cellular mode of action and the impact on the cellular fucosylation pathway of miRNAs reducing core-fucosylation. While multiplex approaches increased phenotypic effects on the glycan structure, a synthetic biology approach utilizing rational design of artificial miRNAs further enhanced the potential of miRNAs as novel, versatile and tune-able tools for engineering of N-linked glycosylation pathways and expressed glycosylation patterns towards favourable phenotypes.


Subject(s)
MicroRNAs , Cricetinae , Animals , Glycosylation , MicroRNAs/genetics , MicroRNAs/metabolism , CHO Cells , Cricetulus , Antibodies, Monoclonal/genetics , Polysaccharides/genetics
7.
Biotechnol Bioeng ; 120(4): 987-999, 2023 04.
Article in English | MEDLINE | ID: mdl-36577715

ABSTRACT

Extracellular vesicles (EVs) are a novel format of advanced therapeutical medicinal products (ATMPs). They can act regenerative or immune-modulatory as cell therapy substitutes or as a platform for designer exosomes. The biotechnological production of therapeutic EVs is still very much uncharted territory so standardized host cells, production setups, and isolation methods are not yet implemented. In this work, we present a tangential flow filtration (TFF) and fast-performance liquid chromatography (FPLC)-based size exclusion chromatography (SEC) purification setup that is compatible for industry applications. Moreover, we evaluated a series of potential host cell lines regarding their EV productivity, characteristics, and biological functionality. It was found that telomerase-immortalized Wharton's jelly mesenchymal stromal cells (WJ-MSC/TERT273) secrete high amounts of EVs per cell with regenerative capabilities. On the other hand, Cevec's amniocyte producer cells® (CAP®) and human embryonic kidney (HEK293) suspension cells are suitable platforms for designer EVs with high yields. Finally, we aimed to boost the EV secretion of HEK293 cells via chemical adjuvants and verified four compounds that heighten cellular EV secretion in a presumably cAMP-dependent manner. A combination of fenoterol, iodoacetamide, and dinitrophenol increased the EV yield in HEK293 cells threefold and cellular secretion rate fivefold.


Subject(s)
Exosomes , Extracellular Vesicles , Mesenchymal Stem Cells , Humans , HEK293 Cells , Extracellular Vesicles/chemistry , Mesenchymal Stem Cells/metabolism , Filtration
8.
Mol Cell Proteomics ; 21(10): 100278, 2022 10.
Article in English | MEDLINE | ID: mdl-35934186

ABSTRACT

Most of the recombinant biotherapeutics employed today to combat severe illnesses, for example, various types of cancer or autoimmune diseases, are produced by Chinese hamster ovary (CHO) cells. To meet the growing demand of these pharmaceuticals, CHO cells are under constant development in order to enhance their stability and productivity. The last decades saw a shift from empirical cell line optimization toward rational cell engineering using a growing number of large omics datasets to alter cell physiology on various levels. Especially proteomics workflows reached new levels in proteome coverage and data quality because of advances in high-resolution mass spectrometry instrumentation. One type of workflow concentrates on spatial proteomics by usage of subcellular fractionation of organelles with subsequent shotgun mass spectrometry proteomics and machine learning algorithms to determine the subcellular localization of large portions of the cellular proteome at a certain time point. Here, we present the first subcellular spatial proteome of a CHO-K1 cell line producing high titers of recombinant antibody in comparison to the spatial proteome of an antibody-producing plasma cell-derived myeloma cell line. Both cell lines show colocalization of immunoglobulin G chains with chaperones and proteins associated in protein glycosylation within the endoplasmic reticulum compartment. However, we report differences in the localization of proteins associated to vesicle-mediated transport, transcription, and translation, which may affect antibody production in both cell lines. Furthermore, pairing subcellular localization data with protein expression data revealed elevated protein masses for organelles in the secretory pathway in plasma cell-derived MPC-11 (Merwin plasma cell tumor-11) cells. Our study highlights the potential of subcellular spatial proteomics combined with protein expression as potent workflow to identify characteristics of highly efficient recombinant protein-expressing cell lines. Data are available via ProteomeXchange with identifier PXD029115.


Subject(s)
Multiple Myeloma , Proteomics , Cricetinae , Animals , Humans , Proteomics/methods , CHO Cells , Proteome/metabolism , Cricetulus , Plasma Cells/chemistry , Plasma Cells/metabolism , Cell Line, Tumor , Recombinant Proteins/metabolism , Endoplasmic Reticulum/metabolism , Immunoglobulin G , Pharmaceutical Preparations
9.
Appl Microbiol Biotechnol ; 106(18): 6157-6167, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36038753

ABSTRACT

The production of biopharmaceuticals relies on robust cell systems that can produce recombinant proteins at high levels and grow and survive in the stressful bioprocess environment. Chinese hamster ovary cells (CHO) as the main production hosts offer a variety of advantages including robust growth and survival in a bioprocess environment. Cell surface proteins are of special interest for the understanding of how CHO cells react to their environment while maintaining growth and survival phenotypes, since they enable cellular reactions to external stimuli and potentially initiate signaling pathways. To provide deeper insight into functions of this special cell surface sub-proteome, pathway enrichment analysis of the determined CHO surfaceome was conducted. Enrichment of growth/ survival-pathways such as the phosphoinositide-3-kinase (PI3K)-protein kinase B (AKT), mitogen-activated protein kinase (MAPK), Janus kinase/signal transducers and activators of transcription (JAK-STAT), and RAP1 pathways were observed, offering novel insights into how cell surface receptors and ligand-mediated signaling enable the cells to grow and survive in a bioprocess environment. When supplementing surfaceome data with RNA expression data, several growth/survival receptors were shown to be co-expressed with their respective ligands and thus suggesting self-induction mechanisms, while other receptors or ligands were not detectable. As data about the presence of surface receptors and their associated expressed ligands may serve as base for future studies, further pathway characterization will enable the implementation of optimization strategies to further enhance cellular growth and survival behavior. KEY POINTS: • PI3K/AKT, MAPK, JAK-STAT, and RAP1 pathway receptors are enriched on the CHO cell surface and downstream pathways present on mRNA level. • Detected pathways indicate strong CHO survival and growth phenotypes. • Potential self-induction of surface receptors and respective ligands.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Animals , CHO Cells , Cricetinae , Cricetulus , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics
10.
Biotechnol Adv ; 59: 107978, 2022 10.
Article in English | MEDLINE | ID: mdl-35569699

ABSTRACT

Chinese hamster ovary (CHO) cells have been the predominant host for recombinant protein production over the past decades with major efforts directed towards cell line engineering to increase amount and quality of biopharmaceutics. Emerging omics approaches and corresponding techniques now allow an extensive characterization of cellular expression systems. Technical improvements in sequencing, mass spectrometry techniques and focusing on defined cellular subsystems unraveled new possibilities for knowledge-based CHO engineering. We found that spotlighting a defined subset of molecules with certain properties or localization, called sub-omics, can provide a better understanding of the respective cellular subsets, enabling the identification of new engineering targets. In this review, we provide an overview of how recent advances from cellular sub-transcriptomes, sub-proteomes and the secretome analyses were and can be utilized for cell line development.


Subject(s)
Cell Engineering , Proteome , Animals , CHO Cells , Cricetinae , Cricetulus , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
11.
Sci Rep ; 12(1): 2268, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35145179

ABSTRACT

Unfavorable process conditions lead to adverse cultivation states, limited cell growth and thus hamper biotherapeutic protein production. Oxygen deficiency or hyperosmolality are among the most critical process conditions and therefore require continuous monitoring. We established a novel sensor CHO cell line with the ability to automatically sense and report unwanted process conditions by the expression of destabilized fluorescent proteins. To this end, an inducible real-time system to detect hypoxia by hypoxia response elements (HREs) of vascular endothelial growth factor (VEGF) origin reporting limitations by the expression of destabilized green fluorescent protein (GFP) was created. Additionally, we established a technique for observing hyperosmolality by exploiting osmotic response elements (OREs) for the expression of unstable blue fluorescent protein (BFP, FKBP-BFP), enabling the simultaneous automated supervision of two bioprocess parameters by using a dual sensor CHO cell line transfected with a multiplexable monitoring system. We finally also provided a fully automated in-line fluorescence microscopy-based setup to observe CHO cells and their response to varying culture conditions. In summary, we created the first CHO cell line, reporting unfavorable process parameters to the operator, and provided a novel and promising sensor technology accelerating the implementation of the process analytical technology (PAT) initiative by innovative solutions.


Subject(s)
Biosensing Techniques , Genes, Reporter , Animals , CHO Cells , Cricetulus , Hypoxia , Osmolar Concentration , Synthetic Biology , Vascular Endothelial Growth Factor A/genetics
12.
J Sep Sci ; 45(12): 2034-2044, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35044720

ABSTRACT

The analysis of monoclonal antibodies glycosylation is a crucial quality control attribute of biopharmaceutical drugs. High throughput screening approaches for antibody glycoform analysis are required in various stages of process optimization. Here, we present high throughput screening suitable mass spectrometry-based workflows for the analysis of intact antibody glycosylation out of cell supernatants. Capillary electrophoresis and liquid chromatography were coupled with quadrupole time-of-flight mass spectrometry or Orbitrap mass spectrometry. Both separation methods offer fast separation (10-15 min) and the capability to prevent the separated cell supernatant matrix to enter the mass spectrometry by post-separation valving. Both mass spectrometry instruments provide comparable results and both are sufficient to determine the glycosylation pattern of the five major glycoforms of the measured antibodies. However, the Orbitrap yields higher sensitivity of 25 µg/mL (CE-nanoCEasy-Orbitrap mass spectrometry) and 5 µg/mL (liquid chromatography-Orbitrap mass spectrometry). Data processing was optimized for a faster processing and easier detection of low abundant glycoforms based on averaged charge-deconvoluted mass spectra. This approach combines a non-target glycoform analysis while yielding the same glycosylation pattern as the traditional approach based on extracted ion traces. The presented methods enable the high throughput screening of the glycosylation pattern of antibodies down to low µg/mL-range out of cell supernatant without any sample preparation.


Subject(s)
Antibodies, Monoclonal , Electrophoresis, Capillary , Antibodies, Monoclonal/chemistry , Chromatography, Liquid , Electrophoresis, Capillary/methods , Glycosylation , Mass Spectrometry/methods
13.
N Biotechnol ; 66: 79-88, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34710621

ABSTRACT

Chinese Hamster Ovary (CHO) cells are the most frequently used biopharmaceutical production hosts, although industry is presently suffering from their variable recombinant product quality, insufficient long-term stability and low productivity. Here, we present an effort to address overall cell line engineering by a novel bottom-up microRNA (miRNA) screening approach. miRNAs are small non-coding RNAs known to regulate global gene expression at the post-transcriptional level and have proved to serve as promising tools for cell line engineering for over a decade. Here the miRNome of plasma cells (PCs) has been analyzed as the natural blueprint for optimized production and secretion of antibodies. Performing comparative miRNome cross-species expression analysis of four murine/human PC-derived (PCD) and two CHO cell lines showed 147 conserved miRNAs to be differentially expressed between PCDs and CHOs. Conducting a targeted miRNA screen of this PC-specific miRNA subset revealed 14 miRNAs to improve bioprocess relevant parameters in CHO cells, among them the PC-characteristic miR-183 cluster. Finally, miRNA target prediction tools and transcriptome analysis were combined to elucidate differentially regulated lysine degradation and fatty acid metabolism pathways in monoclonal antibody (mAb) expressing CHO-DG44 and CHO-K1 cells, respectively. Thus, substantial new insights into molecular and cellular mechanisms of biopharmaceutical production cell lines can be gained by targeted bottom-up miRNA screenings.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Biological Products , MicroRNAs , Plasma Cells/metabolism , Animals , Antibody Formation , Biological Products/metabolism , CHO Cells , Cricetinae , Cricetulus , Fatty Acids/metabolism , Humans , Immunologic Factors , Lysine/metabolism , Mice , MicroRNAs/genetics , Transcriptome
14.
Biotechnol Bioeng ; 119(3): 832-844, 2022 03.
Article in English | MEDLINE | ID: mdl-34935124

ABSTRACT

Chinese hamster ovary (CHO) cells are known not to express appreciable levels of the sialic acid residue N-glycolylneuraminic acid (NGNA) on monoclonal antibodies. However, we actually have identified a recombinant CHO cell line expressing an IgG with unusually high levels of NGNA sialylation (>30%). Comprehensive multi-OMICs based experimental analyses unraveled the root cause of this atypical sialylation: (1) expression of the cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene was spontaneously switched on, (2) CMAH mRNA showed an anti-correlated expression to the newly discovered Cricetulus griseus (cgr) specific microRNA cgr-miR-111 and exhibits two putative miR-111 binding sites, (3) miR-111 expression depends on the transcription of its host gene SDK1, and (4) a single point mutation within the promoter region of the sidekick cell adhesion molecule 1 (SDK1) gene generated a binding site for the transcriptional repressor histone H4 transcription factor HINF-P. The resulting transcriptional repression of SDK1 led to a downregulation of its co-expressed miR-111 and hence to a spontaneous upregulation of CMAH expression finally increasing NGNA protein sialylation.


Subject(s)
Antibodies, Monoclonal , MicroRNAs , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , CHO Cells , Cricetinae , Cricetulus , MicroRNAs/genetics , N-Acetylneuraminic Acid/metabolism , Neuraminic Acids , Recombinant Proteins/metabolism , Up-Regulation
15.
Metab Eng Commun ; 13: e00181, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34401326

ABSTRACT

Oxygen deficiency (hypoxia) induces adverse effects during biotherapeutic protein production leading to reduced productivity and cell growth. Hypoxic conditions occur during classical batch fermentations using high cell densities or perfusion processes. Here we present an effort to create novel engineered Chinese hamster ovary (CHO) cell lines by exploiting encountered hypoxic bioprocess conditions to reinforce cellular production capacities. After verifying the conservation of the hypoxia-responsive pathway in CHO cell lines by analyzing oxygen sensing proteins HIF1a, HIF1ß and VDL, hypoxia-response-elements (HREs) were functionally analyzed and used to create hypoxia-responsive expression vectors. Subsequently engineered hypoxia sensitive CHO cell lines significantly induced protein expression (SEAP) during adverse oxygen limitation encountered during batch fermentations as well as high cell density perfusion processes (2.7 fold). We also exploited this novel cell system to establish a highly effective oxygen shift as innovative bioprocessing strategy using hypoxia induction to improve production titers. Thus, substantial improvements can be made to optimize CHO cell productivity for novel bioprocessing challenges as oxygen limitation, providing an avenue to establish better cell systems by exploiting adverse process conditions for optimized biotherapeutic production.

16.
Appl Microbiol Biotechnol ; 105(9): 3673-3689, 2021 May.
Article in English | MEDLINE | ID: mdl-33937930

ABSTRACT

In biopharmaceutical production, Chinese hamster ovary (CHO) cells derived from Cricetulus griseus remain the most commonly used host cell for recombinant protein production, especially antibodies. Over the last decade, in-depth multi-omics characterization of these CHO cells provided data for extensive cell line engineering and corresponding increases in productivity. However, exosomes, extracellular vesicles containing proteins and nucleic acids, are barely researched at all in CHO cells. Exosomes have been proven to be a ubiquitous mediator of intercellular communication and are proposed as new biopharmaceutical format for drug delivery, indicator reflecting host cell condition and anti-apoptotic factor in spent media. Here we provide a brief overview of different separation techniques and subsequently perform a proteome and regulatory, non-coding RNA analysis of exosomes, derived from lab-scale bioreactor cultivations of a CHO-K1 cell line, to lay out reference data for further research in the field. Applying bottom-up orbitrap shotgun proteomics and next-generation small RNA sequencing, we detected 1395 proteins, 144 micro RNA (miRNA), and 914 PIWI-interacting RNA (piRNA) species differentially across the phases of a batch cultivation process. The exosomal proteome and RNA data are compared with other extracellular fractions and cell lysate, yielding several significantly exosome-enriched species. Graphical Abstract KEY POINTS: • First-time comprehensive protein and miRNA characterization of CHO exosomes. • Isolation protocol and time point of bioprocess strongly affect quality of extracellular vesicles. • CHO-derived exosomes also contain numerous piRNA species of yet unknown function.


Subject(s)
Exosomes , Animals , CHO Cells , Cricetinae , Cricetulus , Proteome , Proteomics
17.
Biotechnol Bioeng ; 118(8): 3015-3028, 2021 08.
Article in English | MEDLINE | ID: mdl-33951178

ABSTRACT

Chinese hamster ovary (CHO) suspension cells are the main production hosts for biopharmaceuticals. For the improvement of production processes, it is essential to understand the interaction between CHO cells and their microenvironment. While the cellular membrane is the crucial surface barrier between the inner and outer cell compartments, the subgroup of cell surface proteins (surfaceome) is of particular interest due to its potential to react to external factors and initiate cell communication and interaction pathways. Therefore, the CHO surfaceome was explored for the first time by enriching exposed N-glycosylated membrane proteins before tandem mass spectrometry (MS/MS) analyses, identifying a total of 449 surface proteins, including 34 proteins specific for production cells. Functional annotation and classification located most proteins to the cell surface belonging mainly to the protein classes of receptors, enzymes, and transporters. In addition, adhesion molecules as cadherins, integrins, Ig superfamily and extracellular matrix (ECM) proteins as collagens, laminins, thrombospondin, fibronectin, and tenascin were significantly enriched, which are involved in mechanisms for the formation of cell junctions, cell-cell and cell-ECM adhesion as focal adhesions. As cell adhesion and aggregation counteracts scalable production of biopharmaceuticals, experimental validation confirmed differential expression of integrin ß1 (ITGB1) and ß3, CD44, laminin, and fibronectin on the surface of aggregation-prone CHO production cells. The subsequent modulation of the central interaction protein ITGB1 by small interfering RNA knockdown substantially counteracted cell aggregation pointing toward novel engineering routes for aggregation reduction in biopharmaceutical production cells and exemplifying the potential of the surfaceome for specified engineering strategies.


Subject(s)
Membrane Proteins/metabolism , Proteome/metabolism , Proteomics , Animals , CHO Cells , Cell Adhesion , Cell Aggregation , Cricetulus , Tandem Mass Spectrometry
18.
Biotechnol Prog ; 37(2): e3107, 2021 03.
Article in English | MEDLINE | ID: mdl-33300297

ABSTRACT

The biopharmaceutical industry strives for improvement of their production processes. In recent years, miRNAs have been shown to positively impact the production capacity of recombinant CHO cells, especially with regard to difficult to express proteins. Effective and reliable gene regulation of process relevant target genes by miRNAs is a prerequisite for integrating them into the toolbox of industrial cell engineering strategies. However, most studies rely on transient transfection of miRNA mimics; there is low standardization in evaluation of miRNA function and little knowledge on transferability of effects found during transient expression to stable expression during industry relevant fed-batch cultivation. In order to provide more insight into this topic, we used the pcDNA6.2 vector for stable miRNA overexpression during batch and fed-batch cultivation in CHO DG44 cells, optimized the vector, and compared the miRNA levels and effects with those achieved by transfection of miRNA mimics. We found that miR-1 downregulated TWF1 mRNA in different recombinant CHO DG44 clones in a dose-dependent manner during transient batch cultivation. Cells stably overexpressing miR-1 also showed a TWF1 mRNA downregulation when cultivated in batch mode using in-house medium 1. However, when the cells stably overexpressing miR-1 were cultivated in fed-batch mode using in-house medium 2. Consequently, a change of cultivation mode and medium seems to have an impact on target gene regulation by miRNA. Taken together, our findings highlight the importance to standardize miRNA evaluations and test miRNAs in the final application environment.


Subject(s)
Cell Engineering/methods , MicroRNAs/genetics , Microfilament Proteins/antagonists & inhibitors , Plasmids/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , RNA, Messenger/genetics , Animals , CHO Cells , Cricetinae , Cricetulus , Culture Media , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , RNA, Messenger/metabolism , Transfection
19.
MAbs ; 12(1): 1787121, 2020.
Article in English | MEDLINE | ID: mdl-32658605

ABSTRACT

The discovery of therapeutic monoclonal antibodies (mAbs) primarily focuses on their biological activity favoring the selection of highly potent drug candidates. These candidates, however, may have physical or chemical attributes that lead to unfavorable chemistry, manufacturing, and control (CMC) properties, such as low product titers, conformational and colloidal instabilities, or poor solubility, which can hamper or even prevent development and manufacturing. Hence, there is an urgent need to consider the developability of mAb candidates during lead identification and optimization. This work provides a comprehensive proof of concept study for the significantly improved developability of a mAb variant that was optimized with the help of sophisticated in silico tools relative to its difficult-to-develop parental counterpart. Interestingly, a single amino acid substitution in the variable domain of the light chain resulted in a three-fold increased product titer after stable expression in Chinese hamster ovary cells. Microscopic investigations revealed that wild type mAb-producing cells displayed potential antibody inclusions, while the in silico optimized variant-producing cells showed a rescued phenotype. Notably, the drug substance of the in silico optimized variant contained substantially reduced levels of aggregates and fragments after downstream process purification. Finally, formulation studies unraveled a significantly enhanced colloidal stability of the in silico optimized variant while its folding stability and potency were maintained. This study emphasizes that implementation of bioinformatics early in lead generation and optimization of biotherapeutics reduces failures during subsequent development activities and supports the reduction of project timelines and resources.


Subject(s)
Antibodies, Monoclonal , Protein Aggregates , Amino Acid Substitution , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/isolation & purification , CHO Cells , Cricetulus , Humans , Solubility
20.
Biotechnol Bioeng ; 117(1): 5-16, 2020 01.
Article in English | MEDLINE | ID: mdl-31631329

ABSTRACT

Although most therapeutic monoclonal antibodies (mAbs) can routinely be produced in the multigram per litre range, some mAb candidates turn out to be difficult-to-express (DTE). In addition, the class of more complex biological formats is permanently increasing and mammalian expression systems like Chinese hamster ovary (CHO) cell lines can show low performance. Hence, there is an urgent need to identify any rate limiting processing step during cellular synthesis. Therefore, we assessed the intracellular location of the DTE antibody mAb2 by fluorescence and electron microscopy (EM) and revealed an accumulation of the antibody, which led to an aberrant morphology of the endoplasmic reticulum (ER). Analysis of underlying cellular mechanisms revealed that neither aggregation nor antibody assembly, but folding represented the reason for hampered secretion. We identified that the disulfide bridge formation within the antibody light chain (LC) was impaired due to less recognition by protein disulfide isomerase (PDI). As a consequence, the DTE molecule was degraded intracellularly by the ubiquitin proteasome system via ER-associated degradation (ERAD). This study revealed that with the continuous emergence of DTE therapeutic protein candidates, special attention needs to be drawn to optimization processes to ensure manufacturability.


Subject(s)
Antibodies, Monoclonal , Endoplasmic Reticulum-Associated Degradation/physiology , Recombinant Proteins , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , CHO Cells , Cell Engineering , Cricetinae , Cricetulus , Disulfides/chemistry , Disulfides/metabolism , Intracellular Space/metabolism , Protein Disulfide-Isomerases/metabolism , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...