Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Hum Genet ; 27(3): 408-421, 2019 03.
Article in English | MEDLINE | ID: mdl-30552426

ABSTRACT

Early-onset epileptic encephalopathy (EE) and combined developmental and epileptic encephalopathies (DEE) are clinically and genetically heterogeneous severely devastating conditions. Recent studies emphasized de novo variants as major underlying cause suggesting a generally low-recurrence risk. In order to better understand the full genetic landscape of EE and DEE, we performed high-resolution chromosomal microarray analysis in combination with whole-exome sequencing in 63 deeply phenotyped independent patients. After bioinformatic filtering for rare variants, diagnostic yield was improved for recessive disorders by manual data curation as well as molecular modeling of missense variants and untargeted plasma-metabolomics in selected patients. In total, we yielded a diagnosis in ∼42% of cases with causative copy number variants in 6 patients (∼10%) and causative sequence variants in 16 established disease genes in 20 patients (∼32%), including compound heterozygosity for causative sequence and copy number variants in one patient. In total, 38% of diagnosed cases were caused by recessive genes, of which two cases escaped automatic calling due to one allele occurring de novo. Notably, we found the recessive gene SPATA5 causative in as much as 3% of our cohort, indicating that it may have been underdiagnosed in previous studies. We further support candidacy for neurodevelopmental disorders of four previously described genes (PIK3AP1, GTF3C3, UFC1, and WRAP53), three of which also followed a recessive inheritance pattern. Our results therefore confirm the importance of de novo causative gene variants in EE/DEE, but additionally illustrate the major role of mostly compound heterozygous or hemizygous recessive inheritance and consequently high-recurrence risk.


Subject(s)
DNA Copy Number Variations , Epilepsy/genetics , Exome Sequencing/methods , Mutation Rate , Adolescent , Adult , Child , Child, Preschool , Epilepsy/diagnosis , Exome , Female , Genes, Recessive , Humans , Infant , Male
2.
Int J Oncol ; 25(6): 1721-7, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15547710

ABSTRACT

Erucylphosphocholine (ErPC) is a promising antineoplastic drug for the treatment of malignant brain tumors. It exerts strong anticancer activity and induces apoptosis even in chemoresistant glioma cells. In the present study, A172 and U373MG glioma cells were treated with ErPC to explore the contribution of MAP kinase family members ERK, JNK and p38 kinase to ErPC-induced cell death. The exposure to ErPC led to activation of JNK and concurrent inhibition of ERK in both cell lines. Using specific MAP kinase inhibitors we confirmed that in U373MG cells ERK was blocked and JNK was activated upon ErPC treatment. Both effects were dependent on caspase activation. In A172 cells, ErPC treatment resulted in an activation of the JNK pathway, whereas the situation with respect to ERK signalling was more complex. We conclude that inhibition of the ERK pathway by ErPC may be related to antiproliferative effects, while activation of the JNK pathway may be responsible for its pro-apoptotic action.


Subject(s)
Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Extracellular Signal-Regulated MAP Kinases/pharmacology , Glioblastoma/enzymology , Glioblastoma/pathology , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Cell Proliferation/drug effects , Humans , JNK Mitogen-Activated Protein Kinases/pharmacology , Signal Transduction , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...