Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Lancet Reg Health Eur ; 36: 100809, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38111727

ABSTRACT

Background: The protection of fourth dose mRNA vaccination against SARS-CoV-2 is relevant to current global policy decisions regarding ongoing booster roll-out. We aimed to estimate the effect of fourth dose vaccination, prior infection, and duration of PCR positivity in a highly-vaccinated and largely prior-COVID-19 infected cohort of UK healthcare workers. Methods: Participants underwent fortnightly PCR and regular antibody testing for SARS-CoV-2 and completed symptoms questionnaires. A multi-state model was used to estimate vaccine effectiveness (VE) against infection from a fourth dose compared to a waned third dose, with protection from prior infection and duration of PCR positivity jointly estimated. Findings: 1298 infections were detected among 9560 individuals under active follow-up between September 2022 and March 2023. Compared to a waned third dose, fourth dose VE was 13.1% (95% CI 0.9 to 23.8) overall; 24.0% (95% CI 8.5 to 36.8) in the first 2 months post-vaccination, reducing to 10.3% (95% CI -11.4 to 27.8) and 1.7% (95% CI -17.0 to 17.4) at 2-4 and 4-6 months, respectively. Relative to an infection >2 years ago and controlling for vaccination, 63.6% (95% CI 46.9 to 75.0) and 29.1% (95% CI 3.8 to 43.1) greater protection against infection was estimated for an infection within the past 0-6, and 6-12 months, respectively. A fourth dose was associated with greater protection against asymptomatic infection than symptomatic infection, whilst prior infection independently provided more protection against symptomatic infection, particularly if the infection had occurred within the previous 6 months. Duration of PCR positivity was significantly lower for asymptomatic compared to symptomatic infection. Interpretation: Despite rapid waning of protection, vaccine boosters remain an important tool in responding to the dynamic COVID-19 landscape; boosting population immunity in advance of periods of anticipated pressure, such as surging infection rates or emerging variants of concern. Funding: UK Health Security Agency, Medical Research Council, NIHR HPRU Oxford, Bristol, and others.

2.
Nat Commun ; 14(1): 5948, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37741831

ABSTRACT

In early 2022, a cluster of monkeypox virus (MPXV) infection (mpox) cases were identified within the UK with no prior travel history to MPXV-endemic regions. Subsequently, case numbers exceeding 80,000 were reported worldwide, primarily affecting gay, bisexual, and other men who have sex with men (GBMSM). Public health agencies worldwide have offered the IMVANEX Smallpox vaccination to these individuals at high-risk to provide protection and limit the spread of MPXV. We have developed a comprehensive array of ELISAs to study poxvirus-induced antibodies, utilising 24 MPXV and 3 Vaccinia virus (VACV) recombinant antigens. Panels of serum samples from individuals with differing Smallpox-vaccine doses and those with prior MPXV infection were tested on these assays, where we observed that one dose of Smallpox vaccination induces a low number of antibodies to a limited number of MPXV antigens but increasing with further vaccination doses. MPXV infection induced similar antibody responses to diverse poxvirus antigens observed in Smallpox-vaccinated individuals. We identify MPXV A27 as a serological marker of MPXV-infection, whilst MPXV M1 (VACV L1) is likely IMVANEX-specific. Here, we demonstrate analogous humoral antigen recognition between both MPXV-infected or Smallpox-vaccinated individuals, with binding to diverse yet core set of poxvirus antigens, providing opportunities for future vaccine (e.g., mRNA) and therapeutic (e.g., mAbs) design.


Subject(s)
Sexual and Gender Minorities , Smallpox Vaccine , Smallpox , Male , Humans , Monkeypox virus/genetics , Smallpox/prevention & control , Immunity, Humoral , Homosexuality, Male
3.
J Infect ; 87(5): 420-427, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37689394

ABSTRACT

OBJECTIVES: To investigate serological correlates of protection against SARS-CoV-2 B.1.617.2 (Delta) infection after two vaccinations. METHODS: We performed a case-control study, where cases were Delta infections after the second vaccine dose and controls were vaccinated, never infected participants, matched by age, gender and region. Sera were tested for anti-SARS-CoV-2 Spike antibody levels (anti-S) and neutralising antibody titres (nAbT), using live virus microneutralisation against Ancestral, Delta and Omicron (BA.1, B.1.1.529). We modelled the decay of anti-S and nAbT for both groups, inferring levels at matched calendar times since the second vaccination. We assessed differences in inferred antibody titres between groups and used conditional logistic regression to explore the relationship between titres and odds of infection. RESULTS: In total, 130 sequence-confirmed Delta cases and 318 controls were included. Anti-S and Ancestral nAbT decayed similarly between groups, but faster in cases for Delta nAbT (p = 0.02) and Omicron nAbT (p = 0.002). At seven days before infection, controls had higher anti-S levels (p < 0.0001) and nAbT (p < 0.0001; all variants) at matched calendar time. A two-fold increase in anti-S levels was associated with a 29% ([95% CI 14-42%]; p = 0.001) reduction in odds of Delta infection. Delta nAbT>40 were associated with reduced odds of Delta infection (89%, [69-96%]; p < 0.0001), with additional benefits for titres >100 (p = 0.009) and >400 (p = 0.007). CONCLUSIONS: We have identified correlates of protection against SARS-CoV-2 Delta, with potential implications for vaccine deployment, development, and public health response.


Subject(s)
Hepatitis D , Vaccines , Humans , Case-Control Studies , Antibodies, Neutralizing , Vaccination , Antibodies, Viral , United Kingdom/epidemiology
4.
mBio ; 14(5): e0121223, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37655880

ABSTRACT

IMPORTANCE: Defining correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine breakthrough infection informs vaccine policy for booster doses and future vaccine designs. Existing studies demonstrate humoral correlates of protection, but the role of T cells in protection is still unclear. In this study, we explore antibody and T cell immune responses associated with protection against Delta variant vaccine breakthrough infection in a well-characterized cohort of UK Healthcare Workers (HCWs). We demonstrate evidence to support a role for CD4+ and CD8+ T cells as well as antibodies against Delta vaccine breakthrough infection. In addition, our results suggest a potential role for cross-reactive T cells in vaccine breakthrough.


Subject(s)
Breakthrough Infections , Vaccines , Humans , Case-Control Studies , Antibodies , CD8-Positive T-Lymphocytes , SARS-CoV-2 , CD4-Positive T-Lymphocytes , Antibodies, Viral , Antibodies, Neutralizing
5.
Nat Commun ; 14(1): 5139, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612310

ABSTRACT

Among the unknowns in decoding the pathogenesis of SARS-CoV-2 persistent symptoms in Long Covid is whether there is a contributory role of abnormal immunity during acute infection. It has been proposed that Long Covid is a consequence of either an excessive or inadequate initial immune response. Here, we analyze SARS-CoV-2 humoral and cellular immunity in 86 healthcare workers with laboratory confirmed mild or asymptomatic SARS-CoV-2 infection during the first wave. Symptom questionnaires allow stratification into those with persistent symptoms and those without for comparison. During the period up to 18-weeks post-infection, we observe no difference in antibody responses to spike RBD or nucleoprotein, virus neutralization, or T cell responses. Also, there is no difference in the profile of antibody waning. Analysis at 1-year, after two vaccine doses, comparing those with persistent symptoms to those without, again shows similar SARS-CoV-2 immunity. Thus, quantitative differences in these measured parameters of SARS-CoV-2 adaptive immunity following mild or asymptomatic acute infection are unlikely to have contributed to Long Covid causality. ClinicalTrials.gov (NCT04318314).


Subject(s)
COVID-19 , Humans , Antibodies, Viral , Asymptomatic Infections , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , T-Lymphocytes
6.
J Infect ; 87(4): 315-327, 2023 10.
Article in English | MEDLINE | ID: mdl-37579793

ABSTRACT

BACKGROUND: COVID-19 vaccines have been shown to be highly effective against hospitalisation and death following COVID-19 infection. COVID-19 vaccine effectiveness estimates against severe endpoints among individuals with clinical conditions that place them at increased risk of critical disease are limited. METHODS: We used English primary care medical record data from the Oxford-Royal College of General Practitioners Research and Surveillance Centre sentinel network (N > 18 million). Data were linked to the National Immunisation Management Service database, Second Generation Surveillance System for virology test data, Hospital Episode Statistics, and death registry data. We estimated adjusted vaccine effectiveness (aVE) against COVID-19 infection followed by hospitalisation and death among individuals in specific clinical risk groups using a cohort design during the delta-dominant period. We also report mortality statistics and results from our antibody surveillance in this population. FINDINGS: aVE against severe endpoints was high, 14-69d following a third dose aVE was 96.4% (95.1%-97.4%) and 97.9% (97.2%-98.4%) for clinically vulnerable people given a Vaxzevria and Comirnaty primary course respectively. Lower aVE was observed in the immunosuppressed group: 88.6% (79.1%-93.8%) and 91.9% (85.9%-95.4%) for Vaxzevria and Comirnaty respectively. Antibody levels were significantly lower among the immunosuppressed group than those not in this risk group across all vaccination types and doses. The standardised case fatality rate within 28 days of a positive test was 3.9/1000 in people not in risk groups, compared to 12.8/1000 in clinical risk groups. Waning aVE with time since 2nd dose was also demonstrated, for example, Comirnaty aVE against hospitalisation reduced from 96.0% (95.1-96.7%) 14-69days post-dose 2-82.9% (81.4-84.2%) 182days+ post-dose 2. INTERPRETATION: In all clinical risk groups high levels of vaccine effectiveness against severe endpoints were seen. Reduced vaccine effectiveness was noted among the immunosuppressed group.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , BNT162 Vaccine , ChAdOx1 nCoV-19 , Cohort Studies , Vaccine Efficacy , SARS-CoV-2 , Hospitalization , Primary Health Care
7.
EClinicalMedicine ; 58: 101926, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37034357

ABSTRACT

Background: Few studies have compared SARS-CoV-2 vaccine immunogenicity by ethnic group. We sought to establish whether cellular and humoral immune responses to SARS-CoV-2 vaccination differ according to ethnicity in UK Healthcare workers (HCWs). Methods: In this cross-sectional analysis, we used baseline data from two immunological cohort studies conducted in HCWs in Leicester, UK. Blood samples were collected between March 3, and September 16, 2021. We excluded HCW who had not received two doses of SARS-CoV-2 vaccine at the time of sampling and those who had serological evidence of previous SARS-CoV-2 infection. Outcome measures were SARS-CoV-2 spike-specific total antibody titre, neutralising antibody titre and ELISpot count. We compared our outcome measures by ethnic group using univariable (t tests and rank-sum tests depending on distribution) and multivariable (linear regression for antibody titres and negative binomial regression for ELISpot counts) tests. Multivariable analyses were adjusted for age, sex, vaccine type, length of interval between vaccine doses and time between vaccine administration and sample collection and expressed as adjusted geometric mean ratios (aGMRs) or adjusted incidence rate ratios (aIRRs). To assess differences in the early immune response to vaccination we also conducted analyses in a subcohort who provided samples between 14 and 50 days after their second dose of vaccine. Findings: The total number of HCWs in each analysis were 401 for anti-spike antibody titres, 345 for neutralising antibody titres and 191 for ELISpot. Overall, 25.4% (19.7% South Asian and 5.7% Black/Mixed/Other) were from ethnic minority groups. In analyses including the whole cohort, neutralising antibody titres were higher in South Asian HCWs than White HCWs (aGMR 1.47, 95% CI [1.06-2.06], P = 0.02) as were T cell responses to SARS-CoV-2 S1 peptides (aIRR 1.75, 95% CI [1.05-2.89], P = 0.03). In a subcohort sampled between 14 and 50 days after second vaccine dose, SARS-CoV-2 spike-specific antibody and neutralising antibody geometric mean titre (GMT) was higher in South Asian HCWs compared to White HCWs (9616 binding antibody units (BAU)/ml, 95% CI [7178-12,852] vs 5888 BAU/ml [5023-6902], P = 0.008 and 2851 95% CI [1811-4487] vs 1199 [984-1462], P < 0.001 respectively), increments which persisted after adjustment (aGMR 1.26, 95% CI [1.01-1.58], P = 0.04 and aGMR 2.01, 95% CI [1.34-3.01], P = 0.001). SARS-CoV-2 ELISpot responses to S1 and whole spike peptides (S1 + S2 response) were higher in HCWs from South Asian ethnic groups than those from White groups (S1: aIRR 2.33, 95% CI [1.09-4.94], P = 0.03; spike: aIRR, 2.04, 95% CI [1.02-4.08]). Interpretation: This study provides evidence that, in an infection naïve cohort, humoral and cellular immune responses to SARS-CoV-2 vaccination are stronger in South Asian HCWs than White HCWs. These differences are most clearly seen in the early period following vaccination. Further research is required to understand the underlying mechanisms, whether differences persist with further exposure to vaccine or virus, and the potential impact on vaccine effectiveness. Funding: DIRECT and BELIEVE have received funding from UK Research and Innovation (UKRI) through the COVID-19 National Core Studies Immunity (NCSi) programme (MC_PC_20060).

8.
J Infect ; 85(5): 545-556, 2022 11.
Article in English | MEDLINE | ID: mdl-36089104

ABSTRACT

OBJECTIVES: To investigate serological differences between SARS-CoV-2 reinfection cases and contemporary controls, to identify antibody correlates of protection against reinfection. METHODS: We performed a case-control study, comparing reinfection cases with singly infected individuals pre-vaccination, matched by gender, age, region and timing of first infection. Serum samples were tested for anti-SARS-CoV-2 spike (anti-S), anti-SARS-CoV-2 nucleocapsid (anti-N), live virus microneutralisation (LV-N) and pseudovirus microneutralisation (PV-N). Results were analysed using fixed effect linear regression and fitted into conditional logistic regression models. RESULTS: We identified 23 cases and 92 controls. First infections occurred before November 2020; reinfections occurred before February 2021, pre-vaccination. Anti-S levels, LV-N and PV-N titres were significantly lower among cases; no difference was found for anti-N levels. Increasing anti-S levels were associated with reduced risk of reinfection (OR 0·63, CI 0·47-0·85), but no association for anti-N levels (OR 0·88, CI 0·73-1·05). Titres >40 were correlated with protection against reinfection for LV-N Wuhan (OR 0·02, CI 0·001-0·31) and LV-N Alpha (OR 0·07, CI 0·009-0·62). For PV-N, titres >100 were associated with protection against Wuhan (OR 0·14, CI 0·03-0·64) and Alpha (0·06, CI 0·008-0·40). CONCLUSIONS: Before vaccination, protection against SARS-CoV-2 reinfection was directly correlated with anti-S levels, PV-N and LV-N titres, but not with anti-N levels. Detectable LV-N titres were sufficient for protection, whilst PV-N titres >100 were required for a protective effect. TRIAL REGISTRATION NUMBER: ISRCTN11041050.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , Case-Control Studies , Humans , Reinfection/prevention & control , Vaccination
9.
Science ; 377(6603): eabq1841, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35699621

ABSTRACT

The Omicron, or Pango lineage B.1.1.529, variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) carries multiple spike mutations with high transmissibility and partial neutralizing antibody (nAb) escape. Vaccinated individuals show protection against severe disease, often attributed to primed cellular immunity. We investigated T and B cell immunity against B.1.1.529 in triple BioNTech BNT162b2 messenger RNA-vaccinated health care workers (HCWs) with different SARS-CoV-2 infection histories. B and T cell immunity against previous variants of concern was enhanced in triple-vaccinated individuals, but the magnitude of T and B cell responses against B.1.1.529 spike protein was reduced. Immune imprinting by infection with the earlier B.1.1.7 (Alpha) variant resulted in less durable binding antibody against B.1.1.529. Previously infection-naïve HCWs who became infected during the B.1.1.529 wave showed enhanced immunity against earlier variants but reduced nAb potency and T cell responses against B.1.1.529 itself. Previous Wuhan Hu-1 infection abrogated T cell recognition and any enhanced cross-reactive neutralizing immunity on infection with B.1.1.529.


Subject(s)
B-Lymphocytes , BNT162 Vaccine , COVID-19 , Immunization, Secondary , SARS-CoV-2 , T-Lymphocytes , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , Cross Reactions , Humans , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
10.
J Infect ; 84(6): 814-824, 2022 06.
Article in English | MEDLINE | ID: mdl-35405169

ABSTRACT

OBJECTIVES: To monitor changes in seroprevalence of SARS-CoV-2 antibodies in populations over time and between different demographic groups. METHODS: A subset of practices in the Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) sentinel network provided serum samples, collected when volunteer patients had routine blood tests. We tested these samples for SARS-CoV-2 antibodies using Abbott (Chicago, USA), Roche (Basel, Switzerland) and/or Euroimmun (Luebeck, Germany) assays, and linked the results to the patients' primary care computerised medical records. We report seropositivity by region and age group, and additionally examined the effects of gender, ethnicity, deprivation, rurality, shielding recommendation and smoking status. RESULTS: We estimated seropositivity from patients aged 18-100 years old, which ranged from 4.1% (95% CI 3.1-5.3%) to 8.9% (95% CI 7.8-10.2%) across the different assays and time periods. We found higher Euroimmun seropositivity in younger age groups, people of Black and Asian ethnicity (compared to white), major conurbations, and non-smokers. We did not observe any significant effect by region, gender, deprivation, or shielding recommendation. CONCLUSIONS: Our results suggest that prior to the vaccination programme, most of the population remained unexposed to SARS-CoV-2.


Subject(s)
COVID-19 , General Practitioners , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral , COVID-19/epidemiology , England/epidemiology , Humans , Middle Aged , Primary Health Care , SARS-CoV-2 , Seroepidemiologic Studies , Young Adult
11.
N Engl J Med ; 386(13): 1207-1220, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35172051

ABSTRACT

BACKGROUND: The duration and effectiveness of immunity from infection with and vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relevant to pandemic policy interventions, including the timing of vaccine boosters. METHODS: We investigated the duration and effectiveness of immunity in a prospective cohort of asymptomatic health care workers in the United Kingdom who underwent routine polymerase-chain-reaction (PCR) testing. Vaccine effectiveness (≤10 months after the first dose of vaccine) and infection-acquired immunity were assessed by comparing the time to PCR-confirmed infection in vaccinated persons with that in unvaccinated persons, stratified according to previous infection status. We used a Cox regression model with adjustment for previous SARS-CoV-2 infection status, vaccine type and dosing interval, demographic characteristics, and workplace exposure to SARS-CoV-2. RESULTS: Of 35,768 participants, 27% (9488) had a previous SARS-CoV-2 infection. Vaccine coverage was high: 95% of the participants had received two doses (78% had received BNT162b2 vaccine [Pfizer-BioNTech] with a long interval between doses, 9% BNT162b2 vaccine with a short interval between doses, and 8% ChAdOx1 nCoV-19 vaccine [AstraZeneca]). Between December 7, 2020, and September 21, 2021, a total of 2747 primary infections and 210 reinfections were observed. Among previously uninfected participants who received long-interval BNT162b2 vaccine, adjusted vaccine effectiveness decreased from 85% (95% confidence interval [CI], 72 to 92) 14 to 73 days after the second dose to 51% (95% CI, 22 to 69) at a median of 201 days (interquartile range, 197 to 205) after the second dose; this effectiveness did not differ significantly between the long-interval and short-interval BNT162b2 vaccine recipients. At 14 to 73 days after the second dose, adjusted vaccine effectiveness among ChAdOx1 nCoV-19 vaccine recipients was 58% (95% CI, 23 to 77) - considerably lower than that among BNT162b2 vaccine recipients. Infection-acquired immunity waned after 1 year in unvaccinated participants but remained consistently higher than 90% in those who were subsequently vaccinated, even in persons infected more than 18 months previously. CONCLUSIONS: Two doses of BNT162b2 vaccine were associated with high short-term protection against SARS-CoV-2 infection; this protection waned considerably after 6 months. Infection-acquired immunity boosted with vaccination remained high more than 1 year after infection. (Funded by the U.K. Health Security Agency and others; ISRCTN Registry number, ISRCTN11041050.).


Subject(s)
Adaptive Immunity , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Adaptive Immunity/immunology , Asymptomatic Diseases , BNT162 Vaccine/therapeutic use , COVID-19/diagnosis , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , ChAdOx1 nCoV-19/therapeutic use , Health Personnel , Humans , Prospective Studies , United Kingdom , Vaccination/methods , Vaccine Efficacy
12.
J Infect ; 84(5): 675-683, 2022 05.
Article in English | MEDLINE | ID: mdl-34990709

ABSTRACT

Background COVID-19 vaccines approved in the UK are highly effective in general population cohorts, however, data on effectiveness amongst individuals with clinical conditions that place them at increased risk of severe disease are limited. Methods We used GP electronic health record data, sentinel virology swabbing and antibody testing within a cohort of 712 general practices across England to estimate vaccine antibody response and vaccine effectiveness against medically attended COVID-19 amongst individuals in clinical risk groups using cohort and test-negative case control designs. Findings There was no reduction in S-antibody positivity in most clinical risk groups, however reduced S-antibody positivity and response was significant in the immunosuppressed group. Reduced vaccine effectiveness against clinical disease was also noted in the immunosuppressed group; after a second dose, effectiveness was moderate (Pfizer: 59.6%, 95%CI 18.0-80.1%; AstraZeneca 60.0%, 95%CI -63.6-90.2%). Interpretation In most clinical risk groups, immune response to primary vaccination was maintained and high levels of vaccine effectiveness were seen. Reduced antibody response and vaccine effectiveness were seen after 1 dose of vaccine amongst a broad immunosuppressed group, and second dose vaccine effectiveness was moderate. These findings support maximising coverage in immunosuppressed individuals and the policy of prioritisation of this group for third doses.


Subject(s)
COVID-19 Vaccines , COVID-19 , BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Humans , Immunity , SARS-CoV-2 , Vaccine Efficacy
13.
Science ; 375(6577): 183-192, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-34855510

ABSTRACT

The impact of the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infecting strain on downstream immunity to heterologous variants of concern (VOCs) is unknown. Studying a longitudinal healthcare worker cohort, we found that after three antigen exposures (infection plus two vaccine doses), S1 antibody, memory B cells, and heterologous neutralization of B.1.351, P.1, and B.1.617.2 plateaued, whereas B.1.1.7 neutralization and spike T cell responses increased. Serology using the Wuhan Hu-1 spike receptor binding domain poorly predicted neutralizing immunity against VOCs. Neutralization potency against VOCs changed with heterologous virus encounter and number of antigen exposures. Neutralization potency fell differentially depending on targeted VOCs over the 5 months from the second vaccine dose. Heterologous combinations of spike encountered during infection and vaccination shape subsequent cross-protection against VOC, with implications for future-proof next-generation vaccines.


Subject(s)
BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/immunology , Coronavirus Nucleocapsid Proteins/immunology , Cross Protection , Female , Health Personnel , Humans , Longitudinal Studies , Male , Memory B Cells/immunology , Mutation , Phosphoproteins/immunology , Protein Domains , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination , Vaccine Potency
14.
Front Immunol ; 12: 748291, 2021.
Article in English | MEDLINE | ID: mdl-34867975

ABSTRACT

Precision monitoring of antibody responses during the COVID-19 pandemic is increasingly important during large scale vaccine rollout and rise in prevalence of Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2) variants of concern (VOC). Equally important is defining Correlates of Protection (CoP) for SARS-CoV-2 infection and COVID-19 disease. Data from epidemiological studies and vaccine trials identified virus neutralising antibodies (Nab) and SARS-CoV-2 antigen-specific (notably RBD and S) binding antibodies as candidate CoP. In this study, we used the World Health Organisation (WHO) international standard to benchmark neutralising antibody responses and a large panel of binding antibody assays to compare convalescent sera obtained from: a) COVID-19 patients; b) SARS-CoV-2 seropositive healthcare workers (HCW) and c) seronegative HCW. The ultimate aim of this study is to identify biomarkers of humoral immunity that could be used to differentiate severe from mild or asymptomatic SARS-CoV-2 infections. Some of these biomarkers could be used to define CoP in further serological studies using samples from vaccination breakthrough and/or re-infection cases. Whenever suitable, the antibody levels of the samples studied were expressed in International Units (IU) for virus neutralisation assays or in Binding Antibody Units (BAU) for ELISA tests. In this work we used commercial and non-commercial antibody binding assays; a lateral flow test for detection of SARS-CoV-2-specific IgG/IgM; a high throughput multiplexed particle flow cytometry assay for SARS-CoV-2 Spike (S), Nucleocapsid (N) and Receptor Binding Domain (RBD) proteins); a multiplex antigen semi-automated immuno-blotting assay measuring IgM, IgA and IgG; a pseudotyped microneutralisation test (pMN) and an electroporation-dependent neutralisation assay (EDNA). Our results indicate that overall, severe COVID-19 patients showed statistically significantly higher levels of SARS-CoV-2-specific neutralising antibodies (average 1029 IU/ml) than those observed in seropositive HCW with mild or asymptomatic infections (379 IU/ml) and that clinical severity scoring, based on WHO guidelines was tightly correlated with neutralisation and RBD/S antibodies. In addition, there was a positive correlation between severity, N-antibody assays and intracellular virus neutralisation.


Subject(s)
COVID-19/immunology , Convalescence , Immunity, Humoral , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19 Serological Testing/standards , Calibration , Humans , Immunoglobulin Isotypes/blood , Immunoglobulin Isotypes/immunology , Reference Standards , Severity of Illness Index
15.
Cell Host Microbe ; 29(11): 1611-1619.e5, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34688376

ABSTRACT

The Johnson and Johnson Ad26.COV2.S single-dose vaccine represents an attractive option for coronavirus disease 2019 (COVID-19) vaccination in countries with limited resources. We examined the effect of prior infection with different SARS-CoV-2 variants on Ad26.COV2.S immunogenicity. We compared participants who were SARS-CoV-2 naive with those either infected with the ancestral D614G virus or infected in the second wave when Beta predominated. Prior infection significantly boosts spike-binding antibodies, antibody-dependent cellular cytotoxicity, and neutralizing antibodies against D614G, Beta, and Delta; however, neutralization cross-reactivity varied by wave. Robust CD4 and CD8 T cell responses are induced after vaccination, regardless of prior infection. T cell recognition of variants is largely preserved, apart from some reduction in CD8 recognition of Delta. Thus, Ad26.COV2.S vaccination after infection could result in enhanced protection against COVID-19. The impact of the infecting variant on neutralization breadth after vaccination has implications for the design of second-generation vaccines based on variants of concern.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Vaccination , Ad26COVS1 , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Female , Humans , Male , Middle Aged , T-Lymphocytes/immunology
16.
Science ; 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33931567

ABSTRACT

SARS-CoV-2 vaccine rollout has coincided with the spread of variants of concern. We investigated if single dose vaccination, with or without prior infection, confers cross protective immunity to variants. We analyzed T and B cell responses after first dose vaccination with the Pfizer/BioNTech mRNA vaccine BNT162b2 in healthcare workers (HCW) followed longitudinally, with or without prior Wuhan-Hu-1 SARS-CoV-2 infection. After one dose, individuals with prior infection showed enhanced T cell immunity, antibody secreting memory B cell response to spike and neutralizing antibodies effective against B.1.1.7 and B.1.351. By comparison, HCW receiving one vaccine dose without prior infection showed reduced immunity against variants. B.1.1.7 and B.1.351 spike mutations resulted in increased, abrogated or unchanged T cell responses depending on human leukocyte antigen (HLA) polymorphisms. Single dose vaccination with BNT162b2 in the context of prior infection with a heterologous variant substantially enhances neutralizing antibody responses against variants.

SELECTION OF CITATIONS
SEARCH DETAIL
...