Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Signal ; 7(357): ra121, 2014 12 23.
Article in English | MEDLINE | ID: mdl-25538079

ABSTRACT

Cancer cells can activate diverse signaling pathways to evade the cytotoxic action of drugs. We created and screened a library of barcoded pathway-activating mutant complementary DNAs to identify those that enhanced the survival of cancer cells in the presence of 13 clinically relevant, targeted therapies. We found that activation of the RAS-MAPK (mitogen-activated protein kinase), Notch1, PI3K (phosphoinositide 3-kinase)-mTOR (mechanistic target of rapamycin), and ER (estrogen receptor) signaling pathways often conferred resistance to this selection of drugs. Activation of the Notch1 pathway promoted acquired resistance to tamoxifen (an ER-targeted therapy) in serially passaged breast cancer xenografts in mice, and treating mice with a γ-secretase inhibitor to inhibit Notch signaling restored tamoxifen sensitivity. Markers of Notch1 activity in tumor tissue correlated with resistance to tamoxifen in breast cancer patients. Similarly, activation of Notch1 signaling promoted acquired resistance to MAPK inhibitors in BRAF(V600E) melanoma cells in culture, and the abundance of Notch1 pathway markers was increased in tumors from a subset of melanoma patients. Thus, Notch1 signaling may be a therapeutic target in some drug-resistant breast cancers and melanomas. Additionally, multiple resistance pathways were activated in melanoma cell lines with intrinsic resistance to MAPK inhibitors, and simultaneous inhibition of these pathways synergistically induced drug sensitivity. These data illustrate the potential for systematic identification of the signaling pathways controlling drug resistance that could inform clinical strategies and drug development for multiple types of cancer. This approach may also be used to advance clinical options in other disease contexts.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , MAP Kinase Signaling System , Melanoma , Neoplasm Proteins , Xenograft Model Antitumor Assays , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Nude , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
2.
Science ; 340(6136): 1100-6, 2013 May 31.
Article in English | MEDLINE | ID: mdl-23723238

ABSTRACT

The mTOR complex 1 (mTORC1) pathway promotes cell growth in response to many cues, including amino acids, which act through the Rag guanosine triphosphatases (GTPases) to promote mTORC1 translocation to the lysosomal surface, its site of activation. Although progress has been made in identifying positive regulators of the Rags, it is unknown if negative factors also exist. Here, we identify GATOR as a complex that interacts with the Rags and is composed of two subcomplexes we call GATOR1 and -2. Inhibition of GATOR1 subunits (DEPDC5, Nprl2, and Nprl3) makes mTORC1 signaling resistant to amino acid deprivation. In contrast, inhibition of GATOR2 subunits (Mios, WDR24, WDR59, Seh1L, and Sec13) suppresses mTORC1 signaling, and epistasis analysis shows that GATOR2 negatively regulates DEPDC5. GATOR1 has GTPase-activating protein (GAP) activity for RagA and RagB, and its components are mutated in human cancer. In cancer cells with inactivating mutations in GATOR1, mTORC1 is hyperactive and insensitive to amino acid starvation, and such cells are hypersensitive to rapamycin, an mTORC1 inhibitor. Thus, we identify a key negative regulator of the Rag GTPases and reveal that, like other mTORC1 regulators, Rag function can be deregulated in cancer.


Subject(s)
Amino Acids/metabolism , Carrier Proteins/metabolism , Lysosomes/enzymology , Monomeric GTP-Binding Proteins/metabolism , Neoplasms/enzymology , Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Cell Line, Tumor , GTPase-Activating Proteins , HEK293 Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes , Mutation , Neoplasms/genetics , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA, Small Interfering/genetics , TOR Serine-Threonine Kinases , Tumor Suppressor Proteins/antagonists & inhibitors , Tumor Suppressor Proteins/genetics
3.
Science ; 332(6035): 1317-22, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21659604

ABSTRACT

The mammalian target of rapamycin (mTOR) protein kinase is a master growth promoter that nucleates two complexes, mTORC1 and mTORC2. Despite the diverse processes controlled by mTOR, few substrates are known. We defined the mTOR-regulated phosphoproteome by quantitative mass spectrometry and characterized the primary sequence motif specificity of mTOR using positional scanning peptide libraries. We found that the phosphorylation response to insulin is largely mTOR dependent and that mTOR exhibits a unique preference for proline, hydrophobic, and aromatic residues at the +1 position. The adaptor protein Grb10 was identified as an mTORC1 substrate that mediates the inhibition of phosphoinositide 3-kinase typical of cells lacking tuberous sclerosis complex 2 (TSC2), a tumor suppressor and negative regulator of mTORC1. Our work clarifies how mTORC1 inhibits growth factor signaling and opens new areas of investigation in mTOR biology.


Subject(s)
GRB10 Adaptor Protein/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Proteins/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Line , Humans , Insulin/metabolism , Mass Spectrometry , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes , Naphthyridines/pharmacology , Phosphoproteins/metabolism , Phosphorylation , Proteome/metabolism , Sirolimus/pharmacology
4.
Genome Res ; 21(3): 433-46, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21239477

ABSTRACT

The evolutionarily conserved target of rapamycin complex 1 (TORC1) controls cell growth in response to nutrient availability and growth factors. TORC1 signaling is hyperactive in cancer, and regulators of TORC1 signaling may represent therapeutic targets for human diseases. To identify novel regulators of TORC1 signaling, we performed a genome-scale RNA interference screen on microarrays of Drosophila melanogaster cells expressing human RPS6, a TORC1 effector whose phosphorylated form we detected by immunofluorescence. Our screen revealed that the TORC1-S6K-RPS6 signaling axis is regulated by many subcellular components, including the Class I vesicle coat (COPI), the spliceosome, the proteasome, the nuclear pore, and the translation initiation machinery. Using additional RNAi reagents, we confirmed 70 novel genes as significant on-target regulators of RPS6 phosphorylation, and we characterized them with extensive secondary assays probing various arms of the TORC1 pathways, identifying functional relationships among those genes. We conclude that cell-based microarrays are a useful platform for genome-scale and secondary screening in Drosophila, revealing regulators that may represent drug targets for cancers and other diseases of deregulated TORC1 signaling.


Subject(s)
Recombinant Proteins/metabolism , Ribosomal Protein S6/metabolism , Transcription Factors/metabolism , Animals , Blotting, Western , Cells, Cultured , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Fluorescent Antibody Technique , Gene Regulatory Networks , Genome , Genomics , Humans , Microarray Analysis , Molecular Targeted Therapy , Phosphorylation , RNA Interference , Recombinant Proteins/genetics , Ribosomal Protein S6/genetics , Signal Transduction/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...