Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Brain Behav Immun ; 108: 221-232, 2023 02.
Article in English | MEDLINE | ID: mdl-36494047

ABSTRACT

Chemotherapy remains a mainstay in the treatment of many types of cancer even though it is associated with debilitating behavioral side effects referred to as "chemobrain," including difficulty concentrating and memory impairment. The predominant hypothesis in the field is that systemic inflammation drives these cognitive impairments, although the brain mechanisms by which this occurs remain poorly understood. Here, we hypothesized that microglia are activated by chemotherapy and drive chemotherapy-associated cognitive impairments. To test this hypothesis, we treated female C57BL/6 mice with a clinically-relevant regimen of a common chemotherapeutic, paclitaxel (6 i.p. doses at 30 mg/kg), which impairs memory of an aversive stimulus as assessed via a contextual fear conditioning (CFC) paradigm. Paclitaxel increased the percent area of IBA1 staining in the dentate gyrus of the hippocampus. Moreover, using a machine learning random forest classifier we identified immunohistochemical features of reactive microglia in multiple hippocampal subregions that were distinct between vehicle- and paclitaxel-treated mice. Paclitaxel treatment also increased gene expression of inflammatory cytokines in a microglia-enriched population of cells from mice. Lastly, a selective inhibitor of colony stimulating factor 1 receptor, PLX5622, was employed to deplete microglia and then assess CFC performance following paclitaxel treatment. PLX5622 significantly reduced hippocampal gene expression of paclitaxel-induced proinflammatory cytokines and restored memory, suggesting that microglia play a critical role in the development of chemotherapy-associated neuroinflammation and cognitive impairments. This work provides critical evidence that microglia drive paclitaxel-associated cognitive impairments, a key mechanistic detail for determining preventative and intervention strategies for these burdensome side effects.


Subject(s)
Cognitive Dysfunction , Microglia , Mice , Female , Animals , Microglia/metabolism , Paclitaxel/adverse effects , Mice, Inbred C57BL , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Cytokines/metabolism , Hippocampus/metabolism
2.
Front Oncol ; 12: 798704, 2022.
Article in English | MEDLINE | ID: mdl-35402248

ABSTRACT

Breast cancer is one of the most common diseases in the United States with 1 in 8 women developing the disease in her lifetime. Women who develop breast cancer are often post-menopausal and undergo a complex sequence of treatments including surgery, chemotherapy, and aromatase inhibitor therapy. Both independently and through potential interactions, these factors and treatments are associated with behavioral comorbidities reported in patients (e.g., fatigue), although the underlying neurobiological mechanisms are poorly understood. Currently, brain imaging is the most feasible way to assess neurobiology in patients. Indeed, breast cancer patients display alterations in white matter connections and chemotherapy is associated with decreased white and gray matter in the corpus callosum and cortex as well as decreased hippocampal volume. However, imaging in breast cancer rodent models is lacking, impeding translation of the mechanistic neurobiological findings made possible through modeling. Furthermore, current rodent models of breast cancer often lack the complexity of typical multimodal breast cancer treatments, thereby limiting translational value. The present study aimed to develop a comprehensive model of post-menopausal breast cancer survival using immunocompetent ovariectomized mice, including an orthotopic syngeneic tumor, surgical tumor removal, chemotherapy, and aromatase inhibitor therapy. Using this model, we systematically investigated the cumulative effects of chemotherapy and hormone replacement therapy on neurostructure and behavior using diffusion weighted imaging, open field test, and spontaneous alternation test. Our previous findings, in a simplified chemotherapy-only model, indicate that this regimen of chemotherapy causes circulating and central inflammation concurrent with reduced locomotor activity. The current study, in the more comprehensive model, has recapitulated the peripheral inflammation coincident with reduced locomotor activity as well as demonstrated that chemotherapy also drives widespread changes in brain anisotropy. Validating the clinical relevance of this comprehensive rodent breast cancer model will allow for additional neurobiological investigations of the interactions among various cancer components associated with behavioral comorbidities, as well as the relationship between these mechanisms and neurostructural imaging changes that can be measured in cancer patients.

3.
Sci Rep ; 11(1): 7656, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33828131

ABSTRACT

Surface plasmons have found a wide range of applications in plasmonic and nanophotonic devices. The combination of plasmonics with three-dimensional photonic crystals has enormous potential for the efficient localization of light in high surface area photoelectrodes. However, the metals traditionally used for plasmonics are difficult to form into three-dimensional periodic structures and have limited optical penetration depth at operational frequencies, which limits their use in nanofabricated photonic crystal devices. The recent decade has seen an expansion of the plasmonic material portfolio into conducting ceramics, driven by their potential for improved stability, and their conformal growth via atomic layer deposition has been established. In this work, we have created three-dimensional photonic crystals with an ultrathin plasmonic titanium nitride coating that preserves photonic activity. Plasmonic titanium nitride enhances optical fields within the photonic electrode while maintaining sufficient light penetration. Additionally, we show that post-growth annealing can tune the plasmonic resonance of titanium nitride to overlap with the photonic resonance, potentially enabling coupled-phenomena applications for these three-dimensional nanophotonic systems. Through characterization of the tuning knobs of bead size, deposition temperature and cycle count, and annealing conditions, we can create an electrically- and plasmonically-active photonic crystal as-desired for a particular application of choice.

4.
Inj Prev ; 26(4): 330-333, 2020 08.
Article in English | MEDLINE | ID: mdl-31300467

ABSTRACT

BACKGROUND: The study objective was to compare the ISS manually assigned by hospital personnel and those generated by the ICDPIC software for value agreement and predictive power of length of stay (LOS) and mortality. METHODS: We used data from the 2010-2016 trauma registry of a paediatric trauma centre (PTC) and 2014 National Trauma Data Bank (NTDB) hospitals that reported manually coded ISS. Agreement analysis was performed between manually and computer assigned ISS with severity groupings of 1-8, 9-15, 16-25 and 25-75. The prediction of LOS was compared using coefficients of determination (R2) from linear regression models. Mortality predictive power was compared using receiver operating characteristic (ROC) curves from logistic regression models. RESULTS: The proportion of agreement between manually and computer assigned ISS in PTC data was 0.84 and for NTDB was 0.75. Analysing predictive power for LOS in the PTC sample, the R2=0.19 for manually assigned scores, and the R2=0.15 for computer assigned scores (p=0.0009). The areas under the ROC curve indicated a mortality predictive power of 0.95 for manually assigned scores and 0.86 for computer assigned scores in the PTC data (p=0.0011). CONCLUSIONS: Manually and computer assigned ISS had strong comparative agreement for minor injuries but did not correlate well for critical injuries (ISS=25-75). The LOS and mortality predictive power were significantly higher for manually assigned ISS when compared with computer assigned ISS in both PTC and NTDB data sets. Thus, hospitals should be cautious about transitioning to computer assigned ISS, specifically for patients who are critically injured.


Subject(s)
Trauma Centers , Wounds and Injuries , Child , Computers , Humans , Injury Severity Score , Logistic Models , Predictive Value of Tests , ROC Curve
5.
Sci Rep ; 8(1): 5761, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29636534

ABSTRACT

We report visualizations of the bidirectional near-field optical transfer function for a waveguide-coupled plasmonic transducer as a metrology technique essential for successful development for mass-fabricated near-field devices. Plasmonic devices have revolutionized the observation of nanoscale phenomena, enabling optical excitation and readout from nanoscale regions of fabricated devices instead of as limited by optical diffraction. Visualizations of the plasmonic transducer modes were acquired both by local near-field excitation of the antenna on the front facet of a waveguide using the focused electron beam of a scanning electron microscope as a probe of the near-field cathodoluminescence during far-field collection from the back facet of the waveguide, and by local mapping of the optical near-field for the same antenna design using scattering scanning near-field optical microscopy as a probe of the near-field optical mode density for far-field light focused into the back facet of the waveguide. Strong agreement between both measurement types and numerical modeling was observed, indicating that the method enables crucial metrological comparisons of as fabricated device performance to as-modeled device expectations for heat-assisted magnetic recording heads, which can be extended to successful development of future near-field-on-chip devices such as optical processor interconnects.

6.
ACS Appl Mater Interfaces ; 8(14): 9319-26, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26837912

ABSTRACT

We present large-scale reproducible fabrication of multifunctional ultrasharp metallic structures on planar substrates with capabilities including magnetic field nanofocusing and plasmonic sensing. Objects with sharp tips such as wedges and pyramids made with noble metals have been extensively used for enhancing local electric fields via the lightning-rod effect or plasmonic nanofocusing. However, analogous nanofocusing of magnetic fields using sharp tips made with magnetic materials has not been widely realized. Reproducible fabrication of sharp tips with magnetic as well as noble metal layers on planar substrates can enable straightforward application of their material and shape-derived functionalities. We use a template-stripping method to produce plasmonic-shell-coated nickel wedge and pyramid arrays at the wafer-scale with tip radius of curvature close to 10 nm. We further explore the magnetic nanofocusing capabilities of these ultrasharp substrates, deriving analytical formulas and comparing the results with computer simulations. These structures exhibit nanoscale spatial control over the trapping of magnetic microbeads and nanoparticles in solution. Additionally, enhanced optical sensing of analytes by these plasmonic-shell-coated substrates is demonstrated using surface-enhanced Raman spectroscopy. These methods can guide the design and fabrication of novel devices with applications including nanoparticle manipulation, biosensing, and magnetoplasmonics.

7.
Nat Commun ; 7: 10217, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26732171

ABSTRACT

Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 10(8)-10(10) times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 10(3) reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , DNA/chemistry , DNA/genetics , Electrochemical Techniques , Membranes, Artificial , Nanopores
8.
Nanoscale ; 7(9): 4226-33, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25672889

ABSTRACT

We present quantitative, spectroscopic polarization interferometry phase measurements on plasmonic surfaces for sensing applications. By adding a liquid crystal variable wave plate in our beam path, we are able to measure phase shifts due to small refractive index changes on the sensor surface. By scanning in a quick sequence, our technique is extended to demonstrate real-time measurements. While this optical technique is applicable to different sensor geometries-e.g., nanoparticles, nanogratings, or nanoapertures-the plasmonic sensors we use here consist of an ultrasmooth gold layer with buried linear gratings. Using these devices and our phase measurement technique, we calculate a figure of merit that shows improvement over measuring only surface plasmon resonance shifts from a reflected intensity spectrum. To demonstrate the general-purpose versatility of our phase-resolved measurements, we also show numerical simulations with another common device architecture: periodic plasmonic slits. Since our technique inherently measures both the intensity and phase of the reflected or transmitted light simultaneously, quantitative sensor device characterization is possible.


Subject(s)
Biosensing Techniques/methods , Interferometry , Surface Plasmon Resonance , Equipment Design , Gold/chemistry , Interferometry/instrumentation , Microscopy
9.
ACS Photonics ; 1(5): 464-470, 2014 May 21.
Article in English | MEDLINE | ID: mdl-25541619

ABSTRACT

Gradient fields of optical, magnetic, or electrical origin are widely used for the manipulation of micro- and nanoscale objects. Among various device geometries to generate gradient forces, sharp metallic tips are one of the most effective. Surface roughness and asperities present on traditionally produced tips reduce trapping efficiencies and limit plasmonic applications. Template-stripped, noble metal surfaces and structures have sub-nm roughness and can overcome these limits. We have developed a process using a mix of conductive and dielectric epoxies to mount template-stripped gold pyramids on tungsten wires that can be integrated with a movable stage. When coupled with a transparent indium tin oxide (ITO) electrode, the conductive pyramidal tip functions as a movable three-dimensional dielectrophoretic trap which can be used to manipulate submicrometer-scale particles. We experimentally demonstrate the electrically conductive functionality of the pyramidal tip by dielectrophoretic manipulation of fluorescent beads and concentration of single-walled carbon nanotubes, detected with fluorescent microscopy and Raman spectroscopy.

10.
Nano Lett ; 14(4): 2006-12, 2014.
Article in English | MEDLINE | ID: mdl-24646075

ABSTRACT

We experimentally demonstrate dielectrophoretic concentration of biological analytes on the surface of a gold nanohole array, which concurrently acts as a nanoplasmonic sensor and gradient force generator. The combination of nanohole-enhanced dielectrophoresis, electroosmosis, and extraordinary optical transmission through the periodic gold nanohole array enables real-time label-free detection of analyte molecules in a 5 µL droplet using concentrations as low as 1 pM within a few minutes, which is more than 1000 times faster than purely diffusion-based binding. The nanohole-based optofluidic platform demonstrated here is straightforward to construct, applicable to both charged and neutral molecules, and performs a novel function that cannot be accomplished using conventional surface plasmon resonance sensors.


Subject(s)
Gold/chemistry , Nanostructures/chemistry , Serum Albumin, Bovine/analysis , Surface Plasmon Resonance/instrumentation , Animals , Cattle , Electroosmosis/instrumentation , Electrophoresis/instrumentation , Equipment Design , Nanostructures/ultrastructure , Serum Albumin, Bovine/isolation & purification
11.
Ann Phys ; 524(11): 687-696, 2012 Nov.
Article in English | MEDLINE | ID: mdl-24159227

ABSTRACT

We present a new plasmonic device architecture based on ultrasmooth metallic surfaces with buried plasmonic nanostructures. Using template-stripping techniques, ultrathin gold films with less than 5 Å surface roughness are optically coupled to an arbitrary arrangement of buried metallic gratings, rings, and nanodots. As a prototypical example, we present linear plasmonic gratings buried under an ultrasmooth 20 nm thick gold surface for biosensing. The optical illumination and collection are completely decoupled from the microfluidic delivery of liquid samples due to the backside, reflection-mode geometry. This allows for sensing with opaque or highly scattering liquids. With the buried nanostructure design, we maintain high sensitivity and decoupled backside (reflective) optical access as with traditional prism-based surface plasmon resonance (SPR) sensors. In addition, we also gain the benefits offered by nanoplasmonic sensors such as spectral tunability and high-resolution, wide-field SPR imaging with normal-incidence epi-illumination that is simple to construct and align. Beyond sensing, our buried plasmonic nanostructures with ultrasmooth metallic surfaces can benefit nanophotonic waveguides, surface-enhanced spectroscopy, nanolithography, and optical trapping.

SELECTION OF CITATIONS
SEARCH DETAIL