Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 24(7): 1027-1039, 2019 07.
Article in English | MEDLINE | ID: mdl-29302074

ABSTRACT

Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence.


Subject(s)
Genes, Recessive/genetics , Intellectual Disability/genetics , Adult , Consanguinity , Exome/genetics , Family , Female , High-Throughput Nucleotide Sequencing/methods , Homozygote , Humans , Iran , Male , Middle Aged , Mutation/genetics , Pedigree , Protein Interaction Maps/genetics , Exome Sequencing/methods , Whole Genome Sequencing/methods
2.
Hum Mutat ; 38(6): 621-636, 2017 06.
Article in English | MEDLINE | ID: mdl-28236339

ABSTRACT

Intellectual disability (ID) is the hallmark of an extremely heterogeneous group of disorders that comprises a wide variety of syndromic and non-syndromic phenotypes. Here, we report on mutations in two aminoacyl-tRNA synthetases that are associated with ID in two unrelated Iranian families. In the first family, we identified a homozygous missense mutation (c.514G>A, p.Asp172Asn) in the cytoplasmic seryl-tRNA synthetase (SARS) gene. The mutation affects the enzymatic core domain of the protein and impairs its enzymatic activity, probably leading to reduced cytoplasmic tRNASer concentrations. The mutant protein was predicted to be unstable, which could be substantiated by investigating ectopic mutant SARS in transfected HEK293T cells. In the second family, we found a compound heterozygous genotype of the mitochondrial tryptophanyl-tRNA synthetase (WARS2) gene, comprising a nonsense mutation (c.325delA, p.Ser109Alafs*15), which very likely entails nonsense-mediated mRNA decay and a missense mutation (c.37T>G, p.Trp13Gly). The latter affects the mitochondrial localization signal of WARS2, causing protein mislocalization. Including AIMP1, which we have recently implicated in the etiology of ID, three genes with a role in tRNA-aminoacylation are now associated with this condition. We therefore suggest that the functional integrity of tRNAs in general is an important factor in the development and maintenance of human cognitive functions.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Intellectual Disability/genetics , Nonsense Mediated mRNA Decay/genetics , Adolescent , Adult , Child , Cytokines/genetics , Female , HEK293 Cells , Homozygote , Humans , Intellectual Disability/pathology , Iran , Male , Mutation, Missense/genetics , Neoplasm Proteins/genetics , Pedigree , RNA-Binding Proteins/genetics
3.
Genesis ; 39(1): 65-72, 2004 May.
Article in English | MEDLINE | ID: mdl-15124229

ABSTRACT

Previous studies have shown that loss-of-imprinting (LOI) is a regular occurrence in interspecies hybrids of the genus Peromyscus. Furthermore, evidence was presented that indicated that LOI is involved in a placental hybrid dysgenesis effect resulting in abnormal placental growth and thus possibly in speciation. We show here that LOI of the strictly paternally expressed gene Peg1 (also called Mest) occurs in F1 hybrids between Mus musculus (MMU) and M. spretus (MSP). Peg1 LOI is correlated with increased body weight and increased weight of two of the organs tested, kidney and spleen. X-gal staining of tissues derived from Peg1(+/-) x MSP F1 mice, carrying a maternal LacZ knock-in allele of Peg1, demonstrates that LOI is stochastic in that it affects different tissues to variable extents and that, even within one tissue, not all cells are similarly affected. Furthermore, this expression from the maternal allele does not necessarily follow the endogenous paternal Peg1 expression pattern. Our results indicate that LOI occurs in interspecies hybrids in the genus Mus and that altered growth is a frequent outcome of LOI.


Subject(s)
Genomic Imprinting , Growth/genetics , Proteins/physiology , Animals , Hybridization, Genetic , Lac Operon , Mice , Proteins/genetics
4.
Genetics ; 165(1): 223-8, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14504229

ABSTRACT

Interspecific hybridization in the genus Mus results in several hybrid dysgenesis effects, such as male sterility and X-linked placental dysplasia (IHPD). The genetic or molecular basis for the placental phenotypes is at present not clear. However, an extremely complex genetic system that has been hypothesized to be caused by major epigenetic changes on the X chromosome has been shown to be active. We have investigated DNA methylation of several single genes, Atrx, Esx1, Mecp2, Pem, Psx1, Vbp1, Pou3f4, and Cdx2, and, in addition, of LINE-1 and IAP repeat sequences, in placentas and tissues of fetal day 18 mouse interspecific hybrids. Our results show some tendency toward hypomethylation in the late gestation mouse placenta. However, no differential methylation was observed in hyper- and hypoplastic hybrid placentas when compared with normal-sized littermate placentas or intraspecific Mus musculus placentas of the same developmental stage. Thus, our results strongly suggest that generalized changes in methylation patterns do not occur in trophoblast cells of such hybrids.


Subject(s)
DNA Methylation , Hybridization, Genetic , Placenta/metabolism , Animals , Female , Genes, Intracisternal A-Particle/physiology , Long Interspersed Nucleotide Elements/genetics , Long Interspersed Nucleotide Elements/physiology , Mice , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...