Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Aerobiologia (Bologna) ; 38(4): 591-596, 2022.
Article in English | MEDLINE | ID: mdl-36471879

ABSTRACT

Abundance and diversity of airborne pollen are important to human health and biodiversity. The UK operational network collects airborne pollen from 8 flowering trees, grasses and three weeds using Hirst traps and microscopic identification from urban areas. Knowledge of total pollen diversity and differences between rural and urban zones is limited. We collect environmental DNA (eDNA) from air during summer and autumn over 3 years with mini cyclones from one urban and one rural site. Data are analysed using next generation sequencing and metabarcoding. We find the most common genus, Urtica (57%), is also identified by the national network. The grasses Lolium (10%), Agrostis (2%) and Holcus (1%) are in the national network grouped at family level, while Brassica (2%), Chenopodium (1%), Impatiens (2%), Plantago (4%) and Tilia (7%) are not part of the UK operational network. DNA from 138 genera was identified, where 2% of the sample could not be associated with specific genera. 40% of the sample was classified better using eDNA methods at the genus level, than by optical methods. We calculate Bray-Curtis dissimilarity for the rural and urban zones and find a systematic difference in biodiversity. Overall, this shows airborne DNA reveals more information than methods based on morphological differences. The results also suggest data from sites located in large urban areas will be less representative for less populated rural areas. This presents a dilemma in balancing a network and the associated costs delivering health relevant information to the most populated areas vs. a nation-wide approach.

3.
Environ Pollut ; 274: 115898, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33243540

ABSTRACT

Urban Heat Island (UHI) is posing a significant challenge due to growing urbanisations across the world. Green infrastructure (GI) is popularly used for mitigating the impact of UHI, but knowledge on their optimal use is yet evolving. The UHI effect for large cities have received substantial attention previously. However, the corresponding effect is mostly unknown for towns, where appreciable parts of the population live, in Europe and elsewhere. Therefore, we analysed the possible impact of three vegetation types on UHI under numerous scenarios: baseline/current GI cover (BGI); hypothetical scenario without GI cover (HGI-No); three alternative hypothetical scenarios considering maximum green roofs (HGR-Max), grasslands (HG-Max) and trees (HT-Max) using a dispersion model ADMS-Temperature and Humidity model (ADMS-TH), taking a UK town (Guildford) as a case study area. Differences in an ambient temperature between three different landforms (central urban area, an urban park, and suburban residential area) were also explored. Under all scenarios, the night-time (0200 h; local time) showed a higher temperature increase, up to 1.315 °C due to the lowest atmospheric temperature. The highest average temperature perturbation (change in ambient temperature) was 0.563 °C under HGI-No scenario, followed by HG-Max (0.400 °C), BGI (0.343 °C), HGR-Max (0.326 °C) and HT-Max (0.277 °C). Furthermore, the central urban area experienced a 0.371 °C and 0.401 °C higher ambient temperature compared with its nearby suburban residential area and urban park, respectively. The results allow to conclude that temperature perturbations in urban environments are highly dependent on the type of GI, anthropogenic heat sources (buildings and vehicles) and the percentage of land covered by GI. Among all other forms of GI, trees were the best-suited GI which can play a viable role in reducing the UHI. Green roofs can act as an additional mitigation measure for the reduction of UHI at city scale if large areas are covered.


Subject(s)
Hot Temperature , Cities , Europe , Humidity , Islands
4.
Int J Appl Earth Obs Geoinf ; 84: 101947, 2020 Feb.
Article in English | MEDLINE | ID: mdl-35125983

ABSTRACT

The spatial and temporal distribution of trees has a large impact on human health and the environment through contributions to important climate mechanisms as well as commercial, recreational and social activities in society. A range of tree mapping methodologies has been presented in the literature, but tree cover estimates still differ widely between the individual datasets, and comparisons of the thematic accuracy of the resulting tree maps are rather scarce. The Copernicus Sentinel-2 satellites, which were launched in 2015 and 2017, have a combination of high spatial and temporal resolution. Given that this is a new satellite, a substantial amount of research on development of tree mapping algorithms as well as accuracy assessment of said algorithms have to be done in the years to come. To contribute to this process, a tree map produced through unsupervised classification was created for six Sentinel-2 tiles. The agreement between the tree map and the corresponding national forest inventory, as a function of the band combination chosen, was analysed and the thematic accuracy was assessed for two out of the six tiles. The results show that the highest agreement between the present tree map and the national forest inventory was found for bands 2, 3, 6 and 12. The present tree map has a relative difference in tree cover between 8% and 79% compared to previous estimates, but results are characterised by large scatter. Lastly, it is shown that the overall thematic accuracy of the present map is up to 90%, with the user's accuracy ranging from 34.85% to 92.10%, and the producer's accuracy ranging from 23.80% to 97.60% for the various thematic classes. This demonstrates that tree maps with high thematic accuracy can be produced from Sentinel-2. In the future the thematic accuracy can be increased even more through the use of temporal averaging in the mapping procedure, which will enable an accurate estimate of the European tree cover.

5.
Sci Rep ; 9(1): 14279, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31582769

ABSTRACT

Modelling wind speeds in urban areas have many applications e.g. in relation to assessment of wind energy, modelling air pollution, and building design and engineering. Models for extrapolating the urban wind speed exist, but little attention has been paid to the influence of the upwind terrain and the foundations for the extrapolation schemes. To analyse the influence of the upwind terrain and the foundations for the extrapolation of the urban wind speed, measurements from six urban and non-urban stations were explored, and a model for the urban wind speed with and without upwind influence was developed and validated. The agreement between the wind directions at the stations is found to be good, and the influence of atmospheric stability, horizontal temperature gradients, land-sea breeze, temperature, global radiation and Monin-Obukhov Length is found to be small, although future work should explore if this is valid for other urban areas. Moreover, the model is found to perform reasonably well, but the upwind influence is overestimated. Areas of model improvement are thus identified. The upwind terrain thus influences the modelling of the urban wind speed to a large extent, and the fundamental assumptions for the extrapolation scheme are fulfilled for this specific case.

6.
Environ Sci Process Impacts ; 21(4): 701-713, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30855055

ABSTRACT

Air pollution is a major environmental health problem around the world, which needs to be monitored. In recent years, a new generation of low-cost air pollution sensors has emerged. Poor or unknown data quality, resulting from the intrinsic properties of the sensor as well as the lack of a consensus on data processing methodologies for these sensors, has, among other factors, prevented widespread adoption of these sensors. To contribute to the creation of this consensus, we reviewed the available methodologies for quality control, outlier detection and gap filling and applied two outlier detection methodologies and five gap filling methodologies to a case study (consisting of an 11-month long air quality data set from a low-cost sensor). We showed that erroneous data can be detected in a fully automated way, and that point and contextual outlier detection methodologies can be applied to low-cost air pollution data and yield meaningful results. The linear interpolation showed the best performance for gap filling for low-cost air pollution sensors. In conclusion, data cleaning procedures are important, and the presented methods can form part of a generalised data processing methodology for low-cost air pollution sensors.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Environmental Health , Humans , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...