Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Sci Total Environ ; 912: 168841, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38036133

ABSTRACT

The use of electrocoagulation (EC) and anodic oxidation (AO) processes was studied for improving a treatment system for landfill leachates based on a membrane bioreactor (MBR) and a nanofiltration step. The main limitation of the current full-scale system is related to the partial removal of organic compounds that leads to operation of the nanofiltration unit with a highly concentrated feed solution. Application of the EC before the MBR participated in partial removal of the organic load (40 %) with limited energy consumption (2.8 kWh m-3) but with additional production of iron hydroxide sludge. Only AO allowed for non-selective removal of organic compounds. As a standalone process, AO would require a sharp increase of the energy consumption (116 kWh for 81 % removal of total organic carbon). But using lower electric charge and combining AO with EC and MBR processes would allow for achieving high overall removal yields with limited energy consumption. For example, the overall removal yield of total organic carbon was 65 % by application of AO after EC, with an energy consumption of 21 kWh m-3. Results also showed that such treatment strategy might allow for a significant increase of the biodegradability of the effluent before treatment by the MBR. The MBR might then be dedicated to the removal of the residual organic load as well as to the removal of the nitrogen load. The data obtained in this study also showed that the lower electric charge required for integrating AO in a coupled process would allow for strongly decreasing the formation of undesired by-products such as ClO3- and ClO4-.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Iron , Sewage , Oxidation-Reduction , Bioreactors , Carbon
2.
Chemosphere ; 341: 140129, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690550

ABSTRACT

The rapid and efficient mineralization of the chemotherapeutic drug busulfan (BSF) as the target pollutant has been investigated for the first time by three different heterogeneous EF systems that were constructed to ensure the continuous electro-generation of H2O2 and •OH consisting of: i) a multifunctional carbon felt (CF) based cathode composed of reduced graphene oxide (rGO), iron oxide nanoparticles and carbon black (CB) (rGO-Fe3O4/CB@CF), ii) rGO modified cathode (rGO/CB@CF) and rGO supported Fe3O4 (rGO-Fe3O4) catalyst and iii) rGO modified cathode (rGO/CB@CF) and multi walled carbon nanotube supported Fe3O4 (MWCNT-Fe3O4) catalyst. The effects of main variables, including the catalyst amount, applied current and initial pH were investigated. Based on the results, H2O2 was produced by oxygen reduction reaction (ORR) on the liquid-solid interface of both fabricated cathodes. •OH was generated by the reaction of H2O2 with the active site of ≡FeII on the surface of the multifunctional cathode and heterogeneous EF catalysts. Utilizing carbon materials with high conductivity, the redox cycling between ≡FeII and ≡FeIII was effectively facilitated and therefore promoted the performance of the process. The results demonstrated almost complete mineralization of BSF through the heterogeneous systems over a wide applicable pH range. According to the reusability and stability tests, multifunctional cathode exhibited outstanding performance after five consecutive cycles which is promising for the efficient mineralization of refractory organic pollutants. Moreover, intermediates products of BSF oxidation were identified and a plausible oxidation pathway was proposed. Therefore, this study demonstrates efficient and stable cathodes and catalysts for the efficient treatment of an anticancer active substance.


Subject(s)
Environmental Pollutants , Nanocomposites , Busulfan , Ferric Compounds , Hydrogen Peroxide , Electric Conductivity , Soot , Ferrous Compounds
3.
J Hazard Mater ; 437: 129326, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35714542

ABSTRACT

This study aimed at understanding the influence of the generation of oxidants in a heterogeneous way at boron-doped diamond (BDD) anode (anodic oxidation (AO)) or homogeneously in the bulk (electro-Fenton (EF)) during treatment of a textile industry wastewater. Both processes achieved high TOC removal. A yield of 95 % was obtained by combining EF with BDD anode during 6 h of treatment. The EF process was found to be faster and more efficient for discoloration of the effluent, whereas AO was more effective to limit the formation of degradation by-products in the bulk. An advantage of AO was to treat this alkaline effluent without any pH adjustment. Operating these processes under current limitation allowed optimizing energy consumption in both cases. However, using BDD anode led to the formation of very high concentration of ClO3-/ClO4- from Cl- oxidation (even at low current density), which appears as a key challenge for treatment of such effluent by AO. By comparison, EF with Pt anode strongly reduced the formation of ClO3-/ClO4-. Operating EF at low current density even maintained these concentrations below 0.5 % of the initial Cl- concentration. A trade-off should be considered between TOC removal and formation of toxic chlorinated by-products.


Subject(s)
Wastewater , Water Pollutants, Chemical , Boron , Diamond , Electrodes , Hydrogen Peroxide , Oxidation-Reduction , Textile Industry
4.
Environ Res ; 204(Pt A): 111898, 2022 03.
Article in English | MEDLINE | ID: mdl-34450155

ABSTRACT

This study investigated the degradation of the antineoplastic agent 5-fluorouracil (5-FU) widely applied to treat different cancers using different advanced oxidation processes such as electro-Fenton (EF), photocatalysis with TiO2, and H2O2-modified subcritical water oxidation. The treatment with the EF process was the most efficient compared to others. Interestingly, in the EF process, the oxidative degradation of 5-FU behaved differently depending on the anode used. At low currents (20 and 40 mA), Pt and DSA anodes performed better than BDD and Ti4O7 anodes. In contrast, at the higher current of 120 mA, the production of heterogeneous hydroxyl radicals (M(•OH)) became important and contributed significantly to the oxidation of 5-FU in addition to homogeneous •OH generated in the bulk solution. These latter have high O2-evolution overpotential leading to the high amount of physisorbed M(•OH) compared to Pt and DSA. The oxidative degradation of 5-FU was then performed by titanium dioxide-based photocatalytic oxidation and subcritical water oxidation processes, both of which showed a lower degradation efficiency and failed to achieve complete mineralization. Finally, a comparison was performed in laboratory-scale, taking into account the following performance indicators: the degradation efficiency, the mineralization power, the cost of equipment and reagents, and the energy required for the treatment of 5-FU.


Subject(s)
Water Pollutants, Chemical , Water Purification , Boron , Fluorouracil , Hydrogen Peroxide , Oxidation-Reduction , Water
5.
Sci Total Environ ; 791: 148107, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34118668

ABSTRACT

Low yields of H2O2 and a narrow range of appropriate pH values have been two major drawbacks for electro-Fenton (EF) process. Herein, metal-free electrochemical advanced oxidation processes (EAOPs) were developed with nitrogen and sulfur co-doped electrochemically exfoliated graphene (N, S-EEGr) electrocatalysts, which was confirmed as an outstanding bifunctional catalyst for synchronous generation and activation of H2O2 via (2 + 1) e- consecutive reduction reactions. Specifically, two elements (N, S) in metal-free N, S-EEGr-CF cathode synergize to promote the formation of H2O2 followed by its activation. With N, S-EEGr-CF cathode, phenol of initial 50 mg L-1 could be effectively removed within pH 3-11 and 6.25 mA cm-2, and 100% removal efficiency could be achieved within 15-min even at neutral pH. The pseudo-first-order rate constant for phenol removal in metal-free EAOPs with N,S-EEGr-CF at neutral pH was 10 times higher than that with EF process. Detection of active species, coupled with decay kinetics with specific trapping agents, confirmed that OH was the dominant oxidizing species promoting removal efficiencies of organics (phenol, antibiotics and dyes) at pH 3 and pH 7. In the actual wastewater treatment, the synergistic effect of bifunctional catalyst would also be used for improving the degradation efficiency of organics. Thus, the metal-free EAOPs with N,S-EEGr-CF cathode may serve as an alternative in wastewater treatment with a broadened range of solution pH values and avoiding Fe2+ (catalyst) addition.


Subject(s)
Water Pollutants, Chemical , Water Purification , Electrodes , Hydrogen Peroxide , Hydroxyl Radical , Oxidation-Reduction , Water Pollutants, Chemical/analysis
6.
Environ Sci Pollut Res Int ; 28(39): 55029-55040, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34128161

ABSTRACT

A simple, sensitive, and rapid spectrofluorimetric method was developed for the determination of the ß-blocker pindolol. The native fluorescence of pindolol was measured in different organic solvents and in cyclodextrin aqueous media. The highest fluorescence signal was obtained in 2-propanol at λem = 303 nm with λex = 260 nm. Analytical figures of merit for the spectrofluorimetric determination of pindolol were satisfactory, with wide linear dynamic range (LDR) values of two orders of magnitude, and rather low limit of detection (LOD) values between 0.2 and 8.7 ng/mL. Moreover, the addition of cyclodextrins (HP-ß-CD and ß-CD) in aqueous media enhanced the fluorescence of pindolol. In addition, the inclusion complexes of pindolol with cyclodextrins were investigated and the stability constants of complexes were calculated by means of the method of nonlinear regression (NLR). The method was successfully applied to the analysis of tap water and natural water samples, spiked with pindolol.


Subject(s)
Cyclodextrins , Pindolol , Spectrometry, Fluorescence
7.
J Hazard Mater ; 404(Pt A): 124137, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33049627

ABSTRACT

A lot of soil (particularly, former industrial and military sites) has been contaminated by various highly toxic contaminants such as petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs) or chlorinated solvents. Soil remediation is now required for their promotion into new industrial or real estate activities. Therefore, the soil washing (SW) process enhanced by the use of extracting agents (EAs) such as surfactants or cyclodextrins (CDs) has been developed for the removal of hydrophobic organic compounds (HOCs) from contaminated soils. The use of extracting agents allows improving the transfer of HOCs from the soil-sorbed fraction to the washing solution. However, using large amount of extracting agents is also a critical drawback for cost-effectiveness of the SW process. The aim of this review is to examine how extracting agents might be recovered from SW solutions for reuse. Various separation processes are able to recover large amounts of extracting agents according to the physicochemical characteristics of target pollutants and extracting agents. However, an additional treatment step is required for the degradation of recovered pollutants. SW solutions may also undergo degradation processes such as advanced oxidation processes (AOPs) with in situ production of oxidants. Partial recovery of extracting agents can be achieved according to operating conditions and reaction kinetics between organic compounds and oxidant species. The suitability of each process is discussed according to the various physicochemical characteristics of SW solutions. A particular attention is paid to the anodic oxidation process, which allows either a selective degradation of the target pollutants or a complete removal of the organic load depending on the operating conditions.

8.
Chemosphere ; 253: 126659, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32278912

ABSTRACT

Combination of the electro-Fenton process with a post-biological treatment could represent a cost-effective solution for application of electrochemical advanced oxidation processes. The objective of this study was to assess this treatment strategy in the case of a complex pharmaceutical mixture. First, main operating parameters ([Fe2+] and current) of the electro-Fenton process were optimized. An optimal concentration of 0.2 mM of Fe2+ was obtained for mineralization of the pharmaceutical mixture. An optimal current of 400 mA was also obtained for degradation of caffeine and 5-fluorouracil in the mixture. However, mineralization of the effluent was continuously improved when increasing the current owing to the promotion of mineralization of organic compounds at the BDD anode. Besides, energy efficiency was decreased at prolonged treatment time because of mass transport limitation. Interestingly, it was observed a strong biodegradability enhancement of the solution after short treatment times (<3 h) at 500 and 1000 mA, which can be related to the degradation of parent compounds into more biodegradable by-products. The need for an acclimation time of the biomass to the pre-treated effluent was also emphasized, most probably because of the formation of some toxic by-products as observed during acute toxicity tests. Therefore, a biological post-treatment could represent a cost-effective solution for the removal of biodegradable residual organic compounds as well as for the removal of nitrogen released from mineralization of organic compounds under the form of NO3- and NH4+ during electro-Fenton pre-treatment.


Subject(s)
Biodegradation, Environmental , Water Pollutants, Chemical/chemistry , Water Purification/methods , Electrodes , Hydrogen Peroxide/chemistry , Nitrogen , Oxidation-Reduction
9.
J Hazard Mater ; 393: 122513, 2020 07 05.
Article in English | MEDLINE | ID: mdl-32208334

ABSTRACT

The traditional electro-Fenton (EF) has been facing major challenges including narrow suitable range of pH and non-reusability of catalyst. To overcome these drawbacks we synthesized FeIIFeIII-layered double hydroxide modified carbon felt (FeIIFeIII LDH-CF) cathode via in situ solvo-thermal process. Chemical composition and electrochemical characterization of FeIIFeIII LDH-CF were tested and analyzed. The apparent rate constant of decay kinetics of ofloxacin (OFC) with FeIIFeIII LDH-CF (0.18 min-1) at pH 7 was more than 3 times higher than that of homogeneous EF (0.05 min-1) at pH 3 with 0.1 mM Fe2+ under same current density (9.37 mA cm-2). Also, a series of experiments including evolution of solution pH, iron leaching, OFC removal with trapping agent and quantitative detection of hydroxyl radicals (OH) were conducted, demonstrating the dominant role of OH generated by surface catalyst via ≡ FeII/FeIII on LDH cathode for degradation of organics as well contributing to high efficiency and good stability at neutral pH. Besides, formation and evolution of aromatic intermediates, carboxylic acids and inorganic ions (F-, NH4+ and NO3-) were identified by High-Performance Liquid chromatography, Gas Chromatography-Mass Spectrometry and ionic chromatography analyses. These findings allowed proposing a plausible degradation pathway of OFC by OH generated in the heterogeneous EF process.


Subject(s)
Anti-Bacterial Agents/chemistry , Carbon/chemistry , Hydroxides/chemistry , Iron/chemistry , Ofloxacin/chemistry , Water Pollutants, Chemical/chemistry , Electrodes , Electrolysis , Hydrogen-Ion Concentration
10.
Chemosphere ; 247: 125939, 2020 May.
Article in English | MEDLINE | ID: mdl-32069720

ABSTRACT

The removal of the analgesic tramadol (TMD) from water was studied by electro-Fenton (EF) process using BDD anode. Hydroxyl radicals (OH) generated in this process are very strong oxidants and able to successfully oxidize TMD until its total mineralization in aqueous solution. The oxidative degradation of TMD was very rapid with complete disappearance of 0.1 mM (26.3 mg L-1) TMD in 10 min at 500 mA constant current electrolysis. The absolute (second order) rate constant for oxidation of TMD by OH was determined using competition kinetic method and found to be (5.59 ± 0.03) ✕ 109 M-1 s-1. The quasi-complete mineralization of the 0.1 mM TMD solution was obtained in 6 h electrolysis at 500 mA current. Several oxidation reaction intermediates were identified using GC-MS analysis. Oxalic, glyoxylic and fumaric acids were identified and their evolution during electrolysis was followed along treatment. Ammonium and nitrate ions, released during the treatment, were also considered. Based on these data and TOC removal results, a possible mineralization pathway was proposed.


Subject(s)
Tramadol/chemistry , Water Pollutants, Chemical/chemistry , Analgesics , Electrodes , Electrolysis , Hydrogen Peroxide , Hydroxyl Radical , Kinetics , Oxidants , Oxidation-Reduction , Platinum
11.
Chemosphere ; 249: 126176, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32087453

ABSTRACT

Sequential soil washing and electrochemical advanced oxidation processes (EAOPs) were applied for the remediation of synthetic soil contaminated with diesel. The surfactant Tween 80 was used to enhance the extraction of diesel from synthetic soil, and diesel extraction efficiency was improved with the increase of Tween 80 concentration. Under conditions of 180 min washing time, 10 g synthetic soil with 100 mL surfactant solution and two times of soil washing, about 75.2%, 80.0% and 87.9% of diesel was extracted from synthetic soil with 5.0, 7.5 and 10.0 g L-1 Tween 80. The degradation of diesel in soil washing effluent was carried out by two EAOPs, electro-oxidation (EO) and electro-Fenton (EF) using boron-doped diamond (BDD) anode and carbon felt cathode cell. After 360 min EO treatment, 72.7-83.0% of diesel was removed from the effluent after soil washing with 5.0-10.0 g L-1 Tween 80 while higher removal efficiencies (77.7-87.2%) were attained with EF process. Parallel factor analysis (PARAFAC) of excitation emission matrix (EEM) fluorescence spectroscopy was conducted to analysis the transformation of fluorescent components in diesel during the treatment by two EAOPs.


Subject(s)
Environmental Restoration and Remediation/methods , Gasoline/analysis , Soil Pollutants/chemistry , Soil/chemistry , Boron/chemistry , Diamond/chemistry , Electrochemical Techniques/methods , Electrodes , Oxidation-Reduction , Polysorbates/chemistry , Surface-Active Agents/chemistry
12.
Environ Sci Pollut Res Int ; 26(22): 23149-23161, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31190301

ABSTRACT

Oxidative degradation and mineralization of the antifungal drug Nystatin (NYS) was investigated using photochemical advanced oxidation processes UV-C irradiation (280-100 nm), H2O2 photolysis (UV/H2O2), and photo-Fenton (UV/H2O2/Fe3+). The effect of operating parameters such as [H2O2], [Fe3+], and [NYS] initial concentrations on degradation efficiency and mineralization ability of different processes was comparatively examined in order to optimize the processes. Photo-Fenton was found to be the most efficient process attaining complete degradation of 0.02 mM (19.2 mg L-1) NYS at 2 min and a quasi-complete mineralization (97%) of its solution at 5 h treatment while UV/H2O2 and UV-C systems require significantly more time for complete degradation and lower mineralization degrees. The degradation and mineralization kinetics were affected by H2O2 and Fe3+ initial concentration, the optimum dosages being 4 mM and 0.4 mM, respectively. Consumption of H2O2 during photo-Fenton treatment is very fast during the first 30 min leading to the appearance of two stages in the mineralization. The evolution of toxicity of treated solutions was assessed and confirmed the effectiveness of photo-Fenton process for the detoxification of NYS solution at the end of treatment. Application to real wastewater from pharmaceutical industry containing the target molecule NYS showed the effectiveness of photo-Fenton process since it achieved 92% TOC removal rate at 6-h treatment time.


Subject(s)
Hydrogen Peroxide/chemistry , Iron/chemistry , Nystatin/chemistry , Wastewater/chemistry , Kinetics , Oxidation-Reduction , Photochemical Processes , Photolysis , Ultraviolet Rays
13.
Luminescence ; 34(5): 465-471, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30784165

ABSTRACT

Diflubenzuron (DFB) and fenuron (FEN) are benzoylurea and phenylurea pesticides, widely used in Senegal, that do not exhibit any natural fluorescence, but can be determined by means of photoinduced fluorescence (PIF) methods. Photodegradation of DFB and FEN yielded a number of fluorescent and non-fluorescent photoproducts. For both pesticides, at least 10 photoproducts were detected and identified by gas chromatography-mass spectrometry (GC/MS). To identify the formed fluorescent DFB and FEN photoproducts, their fluorescence spectra were compared with those of standard compounds, including phenol and p-hydroxyaniline.


Subject(s)
Diflubenzuron/chemistry , Pesticides/chemistry , Phenylurea Compounds/chemistry , Fluorescence , Gas Chromatography-Mass Spectrometry , Photolysis , Ultraviolet Rays
14.
J Hazard Mater ; 365: 205-226, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30445352

ABSTRACT

The detoxification process mediated by carboxylic acids (CAs) has received considerable spotlights since CAs are clean reagent and ubiquitous in the natural environments and effluents. Here, we present an exhaustive review on surface-bound/dissolved metals-catalyzed Cr(VI) reduction by CAs and CAs-mediated Cr(VI) reduction by many highly/poorly reductive reagents. The overall mechanisms of Cr(VI) reduction are mainly associated with the coordination of CAs with surface-bound/dissolved metals or Cr(VI,V,IV) species and the electron donating abilities of CAs. Additionally, the general decays of intermediate Cr(V,IV) complexes are clearly emerged in the Cr(VI) reduction processes. The performance of various reaction systems for Cr(VI) reduction that is greatly dependent on the operation parameters, including solution pH, reagent concentration, temperature, coexisting ions and gas atmosphere, are also critically commented. From the study survey presented herein, CAs-mediated Cr(VI) reduction processes exhibit good potential for remediation of various Cr(VI)-contaminated waters/sites. However, there is still a need to address the remained bottle-necks and challenges for the remediation of Cr(VI) mediated by CAs in the related natural attenuation cases and the treatment of industrial effluents. Overall, the present review offers the comprehensive understanding of the Cr(VI) reduction mediated by CAs and provide the engineering community with the guidelines for Cr(VI) remediation in the real-world applications.

15.
Environ Sci Technol ; 52(13): 7450-7457, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29856620

ABSTRACT

An electro-Fenton (EF) based technology using activated carbon (AC) fiber as cathode and BDD as anode has been investigated for both regeneration of AC and mineralization of organic pollutants. The large specific surface area and low intraparticle diffusion resistance of AC tissue resulted in high maximum adsorption capacity of phenol (PH) (3.7 mmol g-1) and fast adsorption kinetics. Spent AC tissue was subsequently used as the cathode during the EF process. After 6 h of treatment at 300 mA, 70% of PH was removed from the AC surface. The effectiveness of the process is ascribed to (i) direct oxidation of adsorbed PH by generated hydroxyl radicals, (ii) continuous shift of adsorption equilibrium due to oxidation of organic compounds in the bulk, and (iii) local pH change leading to electrostatic repulsive interactions. Moreover, 91% of PH removed from AC was completely mineralized, thus avoiding adsorption of degradation byproducts and accumulation of toxic compounds such as benzoquinone. Morphological and chemical characteristics of AC were not affected due to the effect of cathodic polarization protection. AC tissue was successfully reused during 10 cycles of adsorption/regeneration with regeneration efficiency ranging from 65 to 78%, in accordance with the amount of PH removed from the AC surface.


Subject(s)
Carbon Fiber , Water Pollutants, Chemical , Carbon , Charcoal , Electrodes , Hydrogen Peroxide , Iron , Oxidation-Reduction
16.
Chemosphere ; 203: 1-10, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29604424

ABSTRACT

The degradation of the herbicide fenuron was investigated using a new porous bifunctional electrode where the electrooxidation takes place on one side and the photocatalysis on the other side. The characterization of the synthetized bifunctional electrode (PbO2/SnO2-Sb2O3/Ti//Ti/TiO2) was performed by scanning electron microscopy, energy dispersive X-ray spectrometry and X-ray diffraction analysis and showed that the anodic side (Ti/SnO2-Sb2O3/PbO2) is covered with a tetragonal ß-PbO2 film and that the photocatalytic side (Ti/TiO2) consists of an anatase phase of TiO2. The single application of electrooxidation achieved 87.8% fenuron degradation and 84.1% chemical oxygen demand (COD) removal while heterogeneous photocatalysis resulted in only 59.2% and 39.7% fenuron concentration decay and COD removal, respectively. On the other hand, the photocatalytically-assisted electrooxidation (photo-electrooxidation) performed on the bifunctional electrode provided higher performances of fenuron degradation (97.5%) and mineralization (97.4%). Investigation of operating parameters highlighted the positive effect of increase in current density. Conversely, an increase in fenuron concentration led to a decrease in degradation rate and COD removal. It was also found that the COD removal and mineralization efficiency are higher in a neutral medium.


Subject(s)
Antimony/chemistry , Electrodes , Lead/chemistry , Oxides/chemistry , Phenylurea Compounds/chemistry , Photochemical Processes , Tin Compounds/chemistry , Titanium/chemistry , Catalysis , Electrolysis , Herbicides/chemistry , Oxidation-Reduction
17.
Chemosphere ; 202: 400-409, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29579675

ABSTRACT

The effective removal of recalcitrant organochlorine pesticides including hexachlorocyclohexane (HCH) present in a real groundwater coming from a landfill of an old lindane (γ-HCH) factory was performed by electrochemical oxidation using a BDD anode and a carbon felt cathode. Groundwater (ΣHCHs = 0.42 mg L-1, TOC0 = 9 mg L-1, pH0 = 7, conductivity = 3.7 mS cm-1) was treated as received, achieving the complete depletion of the HCH isomers and a mineralization degree of 90% at 4 h electrolysis at constant current of 400 mA. Initial groundwater contains high chloride concentration (Cl0- = 630 mg L-1) that is progressively decreased due to its oxidation to different oxychlorine species: Cl2, HClO, ClO-, ClO2- ClO3- and ClO4- some of them (Cl2, HClO, ClO-) playing an important role in the oxidation of organic pollutants. The oxidation rate of chloride (and its oxidized intermediates) depends on the applied current value. Although some of the species generated from them are active oxidants, the presence of inorganic salts is detrimental to the efficiency of the electrochemical process when working at current densities above 100 mA due to the high consumption of hydroxyl radicals in wasting reactions. The initial organic carbon content is not crucial for the extension of the process but high organic loads are more profitable for cost effectiveness. The addition of a supporting electrolyte to the solution could be interesting since it increases the conductivity, reducing the cell potential and therefore, decreasing the energy consumption.


Subject(s)
Hexachlorocyclohexane/chemistry , Pesticides/chemistry , Water Pollutants, Chemical/chemistry , Carbon/chemistry , Electrochemical Techniques , Electrolysis , Hydrocarbons, Chlorinated/chemistry , Hydroxyl Radical/chemistry , Oxidation-Reduction
18.
Environ Sci Pollut Res Int ; 25(35): 34985-34994, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29446016

ABSTRACT

This study is focused on the effective removal of recalcitrant pollutants hexaclorocyclohexanes (HCHs, isomers α, ß, γ, and δ) and chlorobenzenes (CBs) present in a real groundwater coming from a landfill of an old lindane factory. Groundwater is characterized by a total organic carbon (TOC) content of 9 mg L-1, pH0 = 7, conductivity = 3.7 mS cm-1, high salt concentration (SO42-, HCO3-, Cl-), and ferrous iron in solution. The experiments were performed using a BDD anode and a carbon felt (CF) cathode at the natural groundwater pH and without addition of supporting electrolyte. The complete depletion of the four HCH isomers and a mineralization degree of 90% were reached at 4-h electrolysis with a current intensity of 400 mA, the residual TOC (0.8 mg L-1) corresponding mainly to formic acid. A parallel series reaction pathway was proposed: HCHs and CBs are transformed into chlorinated and hydroxylated intermediates that are rapidly oxidized to non-toxic carboxylic acids and/or mineralized, leading to a rapid decrease in solution pH.


Subject(s)
Hydrocarbons, Chlorinated/chemistry , Pesticides/chemistry , Waste Disposal, Fluid/methods , Waste Products/analysis , Carbon/chemistry , Carboxylic Acids , Electrodes , Electrolysis , Groundwater/chemistry , Halogenation , Hexachlorocyclohexane , Hydrocarbons, Chlorinated/analysis , Iron/chemistry , Minerals/chemistry , Oxidation-Reduction , Waste Disposal Facilities , Water Pollutants, Chemical/analysis
19.
Water Res ; 135: 220-230, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29477060

ABSTRACT

This study focuses on the effect of electrode materials on abatement of lindane (an organochlorine pesticide) by electrooxidation process. Comparative performances of different anodic (platinum (Pt), dimensionally stable anode (DSA) and boron-doped diamond (BDD)) and cathodic (carbon sponge (CS), carbon felt (CF) and stainless steel (SS)) materials on lindane electrooxidation and mineralization were investigated. Special attention was paid to determine the role of chlorine active species during the electrooxidation process. The results showed that better performances were obtained when using a BDD anode and CF cathode cell. The influence of the current density was assessed to optimize the oxidation of lindane and the mineralization of its aqueous solution. A quick (10 min) and complete oxidation of 10 mg L-1 lindane solution and relatively high mineralization degree (80% TOC removal) at 4 h electrolysis were achieved at 8.33 mA cm-2 current density. Lindane was quickly oxidized by in-situ generated hydroxyl radicals, (M(•OH)), formed from oxidation of water on the anode (M) surface following pseudo first-order reaction kinetics. Formation of chlorinated and hydroxylated intermediates and carboxylic acids during the treatment were identified and a plausible mineralization pathway of lindane by hydroxyl radicals was proposed.


Subject(s)
Electrodes , Electrolysis/instrumentation , Hexachlorocyclohexane/chemistry , Pesticides/chemistry , Water Pollutants, Chemical/chemistry , Boron , Carbon , Carbon Dioxide/chemistry , Carboxylic Acids/chemistry , Diamond , Electrolysis/methods , Hydroxyl Radical/chemistry , Kinetics , Oxidation-Reduction , Platinum/chemistry , Stainless Steel , Water/chemistry , Water Purification/instrumentation , Water Purification/methods
20.
Environ Sci Pollut Res Int ; 25(9): 8581-8591, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29318483

ABSTRACT

Water pollution by heavy metals is a great health concern worldwide. Lead and cadmium are among the most toxic heavy metals because they are dangerous for the human and aquatic lives. In this work, the removal of lead and cadmium from aqueous solutions has been studied using electrosynthesized 4-amino-3-hydroxynaphthalene-1-sulfonic acid-doped polypyrrole (AHNSA-PPy) films as a new adsorbent. Two distinct methods, including the immersion method, based on the Pb2+ and Cd2+ spontaneous removal by impregnation of the polymer in the solution, and the electro-elimination method, consisting of removal of Pb2+ and Cd2+ ions from the solution by applying a small electrical current (5 mA) to the polymer film, were developed: the evolution of Pb2+ and Cd2+ concentrations with time was monitored by inductively coupled plasma optical emission spectrometry (ICP-OES). The effect of pH on the adsorption and electro-elimination of Pb2+ and Cd2+ using the AHNSA-PPy film was investigated and optimized, showing that the ionic adsorption and electro-elimination processes were highly pH-dependent. The kinetics of Pb2+ and Cd2+ adsorption and electro-elimination were found to follow second-order curves. The maximum adsorption capacity values of the AHNSA-PPy film were 64.0 and 50.4 mg/g, respectively, for Pb2+ and Cd2+. The removal efficiency values were, respectively, for Pb2+ and Cd2+, 80 and 63% by the immersion method, and 93 and 85% by the electro-elimination method. Application of both methods to Senegal natural waters, fortified with Pb2+ and Cd2+, led to removal efficiency values of, respectively for Pb2+ and Cd2+, 76-77 and 58-59% by the immersion method, and of 82-90 and 80-83%, by the electro-elimination method.


Subject(s)
Cadmium/analysis , Electrochemical Techniques/methods , Lead/analysis , Naphthalenes/chemistry , Polymers/chemistry , Pyrroles/chemistry , Sulfonic Acids/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Models, Theoretical , Senegal , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...