Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 243: 120336, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37454458

ABSTRACT

A comparative study of the different advanced oxidation processes (Fe(II)-Oxone, Fe(II)-H2O2, and Fe(II)-NaClO) was carried out herein to analyze the characteristics of organic components and the migration of heavy metals in waste activated sludge. With the Fe(II)-Oxone and Fe(II)-H2O2 treatments, sludge dewaterability was significantly improved, however, sludge dewaterability was deteriorated by the Fe(II)-NaClO treatment. The enhanced sludge dewaterability by the Fe(II)-Oxone and Fe(II)-H2O2 treatments was strongly correlated with the shifted organic components, particularly proteins, in soluble extracellular polymeric substances (S-EPS), while the deteriorated sludge dewaterability by the Fe(II)-NaClO treatment was strongly correlated with the over release of organic components from bound EPS (B-EPS) to S-EPS. For both the Fe(II)-Oxone and Fe(II)-H2O2 treatments, the radicals preferentially attacked humic acid-like organic components over the protein-like organic components in S-EPS, while for the Fe(II)-NaClO treatment, interestingly, the radicals preferentially attacked the protein-like organic components in both S-EPS and B-EPS. The hydrophilic functional groups like phenolic OH and CO of polysaccharides may be more preferentially migrated to S-EPS of sludge by the Fe(II)-NaClO treatment compared to the other two treatments. With the Fe(II)-Oxone and Fe(II)-H2O2 treatments, the proportion of aliphatic compounds as well as the much oxygenated organic components with a low desaturation and a low molecular weight increased. While with the Fe(II)-NaClO treatment, the proportion of low oxygenated organic components with a high desaturation and a high molecular weight increased. The concentration of total organic carbon, particularly the concentration of proteins, may be the key factor determining the shift of Zn and Cu from sludge solid to liquid phase, along with the high oxidation extent of organic components and close binding to CHOS and CHON compounds as indicated by density functional theory (DFT) calculation. This study systematically revealed the simultaneous sludge dewatering and migration of heavy metals when the role of organic components was factored into herein.


Subject(s)
Metals, Heavy , Sewage , Sewage/chemistry , Hydrogen Peroxide/chemistry , Waste Disposal, Fluid/methods , Water/chemistry , Oxidation-Reduction , Spectrum Analysis , Proteins , Ferrous Compounds/chemistry
2.
Environ Res ; 214(Pt 3): 114032, 2022 11.
Article in English | MEDLINE | ID: mdl-35952741

ABSTRACT

Here the role of microplastic size on dissolved organic matter, leaching compounds and microbial community during anaerobic sludge digestion was evaluated. Compared to that without the addition of polyvinyl chloride (PVC), during the 30 days' incubation, the anaerobic sludge digestion by adding PVC at the size of 75 µm and the concentration of 2.4 g/g volatile solids (VS) showed a 8.5% lower cumulative methane production, while a 17.9% higher cumulative methane production was noted by adding PVC at the size of 3000 µm and the concentration of 2.4 g/g VS. A long-term fed-batch laboratory-scale fermenter test for 147 days further testified, that higher removal efficiencies of total solids, volatile solids, and total chemical oxygen demand, and higher methane production were noted by adding PVC (2.4 g/g VS, 3000 µm) into the fermenter. More interestingly, higher concentrations of proteins, polysaccharides, volatile fatty acids, and soluble microbial by-products component were noted in the liquid phase of sludge drawn from the fermenter added with PVC since the biomass therein showed higher efficiencies of solubilization, hydrolysis, acidification, and methanogenesis. Moreover, as identified from the fermenter added with PVC, dibutyl phthalate (DBP) was the most predominant leaching phthalates compound, although the biomass therein showed a 93.4% anaerobic biodegradability of DBP. The leaching of DBP drove the predominance of microbial community towards Synergistota and Methanosaeta. More irregular elliptical shallow dimples were noted on the PVC surface after 147 days' incubation, accompanied with abundances of Proteobacteria, Actinobacteriota, Chloroflexi, Methanosaeta and Methanobacterium. The results from this study showed that the size of microplastic was a crucial factor in evaluating its impact on anaerobic sludge digestion.


Subject(s)
Microbiota , Sewage , Anaerobiosis , Bioreactors , Digestion , Dissolved Organic Matter , Methane , Microplastics , Plastics , Polyvinyl Chloride , Sewage/chemistry
3.
Sci Total Environ ; 838(Pt 4): 156612, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35690206

ABSTRACT

This study systematically evaluated phosphorus (P) solubilization from pyrochar and hydrochar derived from both raw sludge and iron-rich sludge. The data indicated, that an increase in thermal treatment temperature and the presence of iron promoted the accumulation of P in both pyrochar (derived at 300, 500, and 800 °C) and hydrochar (derived at 100, 200, and 280 °C). After incubating pyrochar and hydrochar with a phosphate solubilizing microorganism (PSM) (Pseudomonas aeruginosa) for 30 days, PSM significantly promoted the solubilization of P in pyrochar and hydrochar synthesized at low temperatures rather than those at high temperatures, with a 59 % increase for the pyrolysis of raw sludge at 300 °C than that pyrolyzed at 800 °C and a 62 % increase for the hydrothermal treatment of raw sludge at 100 °C than that treated at 280 °C. And the phenomena were more obvious on the char samples derived from iron-rich sludge. The mass balance of different P species in the solid and liquid phases indicated that after incubating with PSM for 30 days, NaOH-P was the main P solubilized from the solid phase of pyrochar and HCl-P was the main P solubilized from the solid phase of hydrochar. Considering P availability to plants, the preliminary economic analysis indicated that the hydrothermal treatment of iron-rich sludge at 100 °C showed the highest economic benefits for P recovery, with the net cost of 28.79 USD/ton wet sludge. This study was useful in giving novel insights into the reuse of char samples as P fertilizer, and also suggested the importance of Pseudomonas aeruginosa and other bacteria in sludge application, particularly in terms of P solubilization.


Subject(s)
Phosphorus , Sewage , Fertilizers/analysis , Iron , Phosphates , Phosphorus/analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...