Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Res Sq ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38883785

ABSTRACT

Enchondromas are a common tumor in bone that can occur as multiple lesions in enchondromatosis, which is associated with deformity of the effected bone. These lesions harbor mutations in IDH and driving expression of a mutant Idh1 in Col2 expressing cells in mice causes an enchondromatosis phenotype. In this study we compared growth plates from E18.5 mice expressing a mutant Idh1 with control littermates using single cell RNA sequencing. Data from Col2 expressing cells were analyzed using UMAP and RNA pseudo-time analyses. A unique cluster of cells was identified in the mutant growth plates that expressed genes known to be upregulated in enchondromas. There was also a cluster of cells that was underrepresented in the mutant growth plates that expressed genes known to be important in longitudinal bone growth. Immunofluorescence showed that the genes from the unique cluster identified in the mutant growth plates were expressed in multiple growth plate anatomic zones, and pseudo-time analysis also suggested these cells could arise from multiple growth plate chondrocyte subpopulations. This data identifies subpopulations of cells in control and mutant growth plates, and supports the notion that a mutant Idh1 alters the subpopulations of growth plate chondrocytes, resulting a subpopulation of cells that become enchondromas at the expense of other populations that contribute to longitudinal growth.

2.
Dev Cell ; 59(5): 676-691.e5, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38290519

ABSTRACT

Regeneration involves gene expression changes explained in part by context-dependent recruitment of transcriptional activators to distal enhancers. Silencers that engage repressive transcriptional complexes are less studied than enhancers and more technically challenging to validate, but they potentially have profound biological importance for regeneration. Here, we identified candidate silencers through a screening process that examined the ability of DNA sequences to limit injury-induced gene expression in larval zebrafish after fin amputation. A short sequence (s1) on chromosome 5 near several genes that reduce expression during adult fin regeneration could suppress promoter activity in stable transgenic lines and diminish nearby gene expression in knockin lines. High-resolution analysis of chromatin organization identified physical associations of s1 with gene promoters occurring preferentially during fin regeneration, and genomic deletion of s1 elevated the expression of these genes after fin amputation. Our study provides methods to identify "tissue regeneration silencer elements" (TRSEs) with the potential to reduce unnecessary or deleterious gene expression during regeneration.


Subject(s)
Silencer Elements, Transcriptional , Zebrafish , Animals , Zebrafish/genetics , Animals, Genetically Modified , Promoter Regions, Genetic
3.
Nat Commun ; 14(1): 4857, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37567873

ABSTRACT

Unlike adult mammals, zebrafish regenerate spinal cord tissue and recover locomotor ability after a paralyzing injury. Here, we find that ependymal cells in zebrafish spinal cords produce the neurogenic factor Hb-egfa upon transection injury. Animals with hb-egfa mutations display defective swim capacity, axon crossing, and tissue bridging after spinal cord transection, associated with disrupted indicators of neuron production. Local recombinant human HB-EGF delivery alters ependymal cell cycling and tissue bridging, enhancing functional regeneration. Epigenetic profiling reveals a tissue regeneration enhancer element (TREE) linked to hb-egfa that directs gene expression in spinal cord injuries. Systemically delivered recombinant AAVs containing this zebrafish TREE target gene expression to crush injuries of neonatal, but not adult, murine spinal cords. Moreover, enhancer-based HB-EGF delivery by AAV administration improves axon densities after crush injury in neonatal cords. Our results identify Hb-egf as a neurogenic factor necessary for innate spinal cord regeneration and suggest strategies to improve spinal cord repair in mammals.


Subject(s)
Spinal Cord Injuries , Spinal Cord Regeneration , Animals , Humans , Mice , Axons/metabolism , Heparin-binding EGF-like Growth Factor/genetics , Heparin-binding EGF-like Growth Factor/metabolism , Mammals , Nerve Regeneration/genetics , Spinal Cord/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Spinal Cord Regeneration/physiology , Zebrafish/genetics
4.
Nat Genet ; 55(8): 1324-1335, 2023 08.
Article in English | MEDLINE | ID: mdl-37474847

ABSTRACT

Transposable elements (TEs) are parasitic DNA sequences accounting for over half of the human genome. Tight control of the repression and activation states of TEs is critical for genome integrity, development, immunity and diseases, including cancer. However, precisely how this regulation is achieved remains unclear. Here we develop a targeted proteomic proximity labeling approach to capture TE-associated proteins in human embryonic stem cells (hESCs). We find that the RNA N6-methyladenosine (m6A) reader, YTHDC2, occupies genomic loci of the primate-specific TE, LTR7/HERV-H, specifically through its interaction with m6A-modified HERV-H RNAs. Unexpectedly, YTHDC2 recruits the DNA 5-methylcytosine (5mC)-demethylase, TET1, to remove 5mC from LTR7/HERV-H and prevent epigenetic silencing. Functionally, the YTHDC2/LTR7 axis inhibits neural differentiation of hESCs. Our results reveal both an underappreciated crosstalk between RNA m6A and DNA 5mC, the most abundant regulatory modifications of RNA and DNA in eukaryotes, and the fact that in hESCs this interplay controls TE activity and cell fate.


Subject(s)
DNA Transposable Elements , Pluripotent Stem Cells , Animals , Humans , Cell Differentiation/genetics , Chromatin , DNA Methylation/genetics , DNA Transposable Elements/genetics , Mixed Function Oxygenases/genetics , Pluripotent Stem Cells/metabolism , Primates/genetics , Proteomics , Proto-Oncogene Proteins/genetics , RNA, Small Interfering/genetics
5.
J Clin Invest ; 133(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-36928314

ABSTRACT

Inactivation of the RB1 tumor suppressor gene is common in several types of therapy-resistant cancers, including metastatic castration-resistant prostate cancer, and predicts poor clinical outcomes. Effective therapeutic strategies against RB1-deficient cancers remain elusive. Here, we showed that RB1 loss/E2F activation sensitized cancer cells to ferroptosis, a form of regulated cell death driven by iron-dependent lipid peroxidation, by upregulating expression of ACSL4 and enriching ACSL4-dependent arachidonic acid-containing phospholipids, which are key components of ferroptosis execution. ACSL4 appeared to be a direct E2F target gene and was critical to RB1 loss-induced sensitization to ferroptosis. Importantly, using cell line-derived xenografts and genetically engineered tumor models, we demonstrated that induction of ferroptosis in vivo by JKE-1674, a highly selective and stable GPX4 inhibitor, blocked RB1-deficient prostate tumor growth and metastasis and led to improved survival of the mice. Thus, our findings uncover an RB/E2F/ACSL4 molecular axis that governs ferroptosis and also suggest a promising approach for the treatment of RB1-deficient malignancies.


Subject(s)
Ferroptosis , Prostatic Neoplasms , Male , Humans , Mice , Animals , Ferroptosis/genetics , Prostatic Neoplasms/pathology , Cell Line , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Retinoblastoma Binding Proteins/genetics , Retinoblastoma Binding Proteins/metabolism , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism
6.
Cell Stem Cell ; 30(1): 96-111.e6, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36516837

ABSTRACT

The efficacy and safety of gene-therapy strategies for indications like tissue damage hinge on precision; yet, current methods afford little spatial or temporal control of payload delivery. Here, we find that tissue-regeneration enhancer elements (TREEs) isolated from zebrafish can direct targeted, injury-associated gene expression from viral DNA vectors delivered systemically in small and large adult mammalian species. When employed in combination with CRISPR-based epigenome editing tools in mice, zebrafish TREEs stimulated or repressed the expression of endogenous genes after ischemic myocardial infarction. Intravenously delivered recombinant AAV vectors designed with a TREE to direct a constitutively active YAP factor boosted indicators of cardiac regeneration in mice and improved the function of the injured heart. Our findings establish the application of contextual enhancer elements as a potential therapeutic platform for spatiotemporally controlled tissue regeneration in mammals.


Subject(s)
Enhancer Elements, Genetic , Genetic Therapy , Heart , Myocardial Infarction , Myocytes, Cardiac , Regeneration , Animals , Mice , Cell Proliferation , Heart/physiology , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Myocytes, Cardiac/metabolism , Zebrafish/genetics , Genetic Therapy/methods , Regeneration/genetics
7.
Nat Commun ; 13(1): 4464, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35915095

ABSTRACT

X chromosome inactivation (XCI) is a dosage compensation phenomenon that occurs in females. Initiation of XCI depends on Xist RNA, which triggers silencing of one of the two X chromosomes, except for XCI escape genes that continue to be biallelically expressed. In the soma XCI is stably maintained with continuous Xist expression. How Xist impacts XCI maintenance remains an open question. Here we conditionally delete Xist in hematopoietic system of mice and report differentiation and cell cycle defects in female hematopoietic stem and progenitor cells (HSPCs). By utilizing female HSPCs and mouse embryonic fibroblasts, we find that X-linked genes show variable tolerance to Xist loss. Specifically, XCI escape genes exhibit preferential transcriptional upregulation, which associates with low H3K27me3 occupancy and high chromatin accessibility that accommodates preexisting binding of transcription factors such as Yin Yang 1 (YY1) at the basal state. We conclude that Xist is necessary for gene-specific silencing during XCI maintenance and impacts lineage-specific cell differentiation and proliferation during hematopoiesis.


Subject(s)
RNA, Long Noncoding , X Chromosome Inactivation , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Female , Fibroblasts/metabolism , Hematopoiesis/genetics , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , X Chromosome/metabolism , X Chromosome Inactivation/genetics
8.
Circulation ; 146(1): 48-63, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35652354

ABSTRACT

BACKGROUND: Certain nonmammalian species such as zebrafish have an elevated capacity for innate heart regeneration. Understanding how heart regeneration occurs in these contexts can help illuminate cellular and molecular events that can be targets for heart failure prevention or treatment. The epicardium, a mesothelial tissue layer that encompasses the heart, is a dynamic structure that is essential for cardiac regeneration in zebrafish. The extent to which different cell subpopulations or states facilitate heart regeneration requires research attention. METHODS: To dissect epicardial cell states and associated proregenerative functions, we performed single-cell RNA sequencing and identified 7 epicardial cell clusters in adult zebrafish, 3 of which displayed enhanced cell numbers during regeneration. We identified paralogs of hapln1 as factors associated with the extracellular matrix and largely expressed in cluster 1. We assessed HAPLN1 expression in published single-cell RNA sequencing data sets from different stages and injury states of murine and human hearts, and we performed molecular genetics to determine the requirements for hapln1-expressing cells and functions of each hapln1 paralog. RESULTS: A particular cluster of epicardial cells had the strongest association with regeneration and was marked by expression of hapln1a and hapln1b. The hapln1 paralogs are expressed in epicardial cells that enclose dedifferentiated and proliferating cardiomyocytes during regeneration. Induced genetic depletion of hapln1-expressing cells or genetic inactivation of hapln1b altered deposition of the key extracellular matrix component hyaluronic acid, disrupted cardiomyocyte proliferation, and inhibited heart regeneration. We also found that hapln1-expressing epicardial cells first emerge at the juvenile stage, when they associate with and are required for focused cardiomyocyte expansion events that direct maturation of the ventricular wall. CONCLUSIONS: Our findings identify a subset of epicardial cells that emerge in postembryonic zebrafish and sponsor regions of active cardiomyogenesis during cardiac growth and regeneration. We provide evidence that, as the heart achieves its mature structure, these cells facilitate hyaluronic acid deposition to support formation of the compact muscle layer of the ventricle. They are also required, along with the function of hapln1b paralog, in the production and organization of hyaluronic acid-containing matrix in cardiac injury sites, enabling normal cardiomyocyte proliferation and muscle regeneration.


Subject(s)
Extracellular Matrix Proteins , Heart , Myocytes, Cardiac , Proteoglycans , Animals , Cell Proliferation , Extracellular Matrix Proteins/metabolism , Heart/physiology , Humans , Hyaluronic Acid/metabolism , Mice , Myocytes, Cardiac/metabolism , Organogenesis , Proteoglycans/metabolism , Regeneration/physiology , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
9.
Elife ; 112022 06 28.
Article in English | MEDLINE | ID: mdl-35762573

ABSTRACT

Mutations in the RNA helicase, DDX3X, are a leading cause of Intellectual Disability and present as DDX3X syndrome, a neurodevelopmental disorder associated with cortical malformations and autism. Yet, the cellular and molecular mechanisms by which DDX3X controls cortical development are largely unknown. Here, using a mouse model of Ddx3x loss-of-function we demonstrate that DDX3X directs translational and cell cycle control of neural progenitors, which underlies precise corticogenesis. First, we show brain development is sensitive to Ddx3x dosage; complete Ddx3x loss from neural progenitors causes microcephaly in females, whereas hemizygous males and heterozygous females show reduced neurogenesis without marked microcephaly. In addition, Ddx3x loss is sexually dimorphic, as its paralog, Ddx3y, compensates for Ddx3x in the developing male neocortex. Using live imaging of progenitors, we show that DDX3X promotes neuronal generation by regulating both cell cycle duration and neurogenic divisions. Finally, we use ribosome profiling in vivo to discover the repertoire of translated transcripts in neural progenitors, including those which are DDX3X-dependent and essential for neurogenesis. Our study reveals invaluable new insights into the etiology of DDX3X syndrome, implicating dysregulated progenitor cell cycle dynamics and translation as pathogenic mechanisms.


During development, a complex network of genes ensures that the brain develops in the right way. In particular, they control how special 'progenitor' cells multiply and mature to form neurons during a process known as neurogenesis. Genetic mutations that interfere with neurogenesis can lead to disability and defects such as microcephaly, where children are born with abnormally small brains. DDX3X syndrome is a recently identified condition characterised by intellectual disability, delayed acquisition of movement and language skills, low muscle tone and, frequently, a diagnosis of autism spectrum disorder. It emerges when certain mutations are present in the DDX3X gene, which helps to control the process by which proteins are built in a cell (also known as translation). The syndrome affects girls more often than boys, potentially because DDX3X is carried on the X chromosome. Many of the disease-causing mutations in the DDX3X gene also reduce the levels of DDX3X protein. However, exactly what genes DDX3X controls and how its loss impairs brain development remain poorly understood. To address this problem, Hoye et al. set out to investigate the role of Ddx3x in mice neurogenesis. Experiments with genetically altered mice confirmed that complete loss of the gene indeed caused severe reduction in brain size at birth; just as in humans with mild microcephaly, this was only present in affected females. Further genetic studies revealed the reason for this: the closely related Ddx3y gene, which is only present on the Y (male) chromosome, helped to compensate for the loss of Ddx3x in the male mice. Next, the effect of the loss of just one copy of Ddx3x on neurogenesis was examined by following how progenitor cells developed. This likely reflects DDX3X levels in patients with the syndrome. Loss of the gene made the cells divide more slowly and produce fewer mature nerve cells, suggesting that smaller brain size and brain malformations caused by mutations in DDX3X could be due to impaired neurogenesis. Finally, a set of further biochemical and genetic experiments revealed a key set of genes that are under the control of the DDX3X protein. These results shed new light on how a molecular actor which helps to control translation is a key part of normal brain development. This understanding could one day help improve clinical management or treatments for DDX3X syndrome and related neurological disorders.


Subject(s)
DEAD-box RNA Helicases , Microcephaly , Neurogenesis , Animals , Cell Cycle , Cell Division , DEAD-box RNA Helicases/genetics , Female , Loss of Function Mutation , Male , Mice , Microcephaly/genetics , Minor Histocompatibility Antigens , Neurogenesis/genetics , Syndrome
10.
Nat Cell Biol ; 24(5): 685-696, 2022 05.
Article in English | MEDLINE | ID: mdl-35513710

ABSTRACT

Acute trauma stimulates local repair mechanisms but can also impact structures distant from the injury, for example through the activity of circulating factors. To study the responses of remote tissues during tissue regeneration, we profiled transcriptomes of zebrafish brains after experimental cardiac damage. We found that the transcription factor gene cebpd was upregulated remotely in brain ependymal cells as well as kidney tubular cells, in addition to its local induction in epicardial cells. cebpd mutations altered both local and distant cardiac injury responses, altering the cycling of epicardial cells as well as exchange between distant fluid compartments. Genome-wide profiling and transgenesis identified a hormone-responsive enhancer near cebpd that exists in a permissive state, enabling rapid gene expression in heart, brain and kidney after cardiac injury. Deletion of this sequence selectively abolished cebpd induction in remote tissues and disrupted fluid regulation after injury, without affecting its local cardiac expression response. Our findings suggest a model to broaden gene function during regeneration in which enhancer regulatory elements define short- and long-range expression responses to injury.


Subject(s)
Gene Expression Regulation , Zebrafish , Animals , Enhancer Elements, Genetic/genetics , Heart , Transcriptome , Zebrafish/genetics , Zebrafish/metabolism
11.
Development ; 149(4)2022 02 15.
Article in English | MEDLINE | ID: mdl-35179181

ABSTRACT

The epicardium is a mesothelial tissue layer that envelops the heart. Cardiac injury activates dynamic gene expression programs in epicardial tissue, which in zebrafish enables subsequent regeneration through paracrine and vascularizing effects. To identify tissue regeneration enhancer elements (TREEs) that control injury-induced epicardial gene expression during heart regeneration, we profiled transcriptomes and chromatin accessibility in epicardial cells purified from regenerating zebrafish hearts. We identified hundreds of candidate TREEs, which are defined by increased chromatin accessibility of non-coding elements near genes with increased expression during regeneration. Several of these candidate TREEs were incorporated into stable transgenic lines, with five out of six elements directing injury-induced epicardial expression but not ontogenetic epicardial expression in larval hearts. Whereas two independent TREEs linked to the gene gnai3 showed similar functional features of gene regulation in transgenic lines, two independent ncam1a-linked TREEs directed distinct spatiotemporal domains of epicardial gene expression. Thus, multiple TREEs linked to a regeneration gene can possess either matching or complementary regulatory controls. Our study provides a new resource and principles for understanding the regulation of epicardial genetic programs during heart regeneration. This article has an associated 'The people behind the papers' interview.


Subject(s)
Enhancer Elements, Genetic/genetics , Heart/physiology , Pericardium/metabolism , Regeneration/physiology , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Chromatin/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Gene Expression Regulation , Larva/growth & development , Larva/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/metabolism , Pericardium/cytology , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
12.
Mol Cell ; 82(6): 1225-1238.e6, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35196517

ABSTRACT

The long-range interactions of cis-regulatory elements (cREs) play a central role in gene regulation. cREs can be characterized as accessible chromatin sequences. However, it remains technically challenging to comprehensively identify their spatial interactions. Here, we report a new method HiCAR (Hi-C on accessible regulatory DNA), which utilizes Tn5 transposase and chromatin proximity ligation, for the analysis of open-chromatin-anchored interactions with low-input cells. By applying HiCAR in human embryonic stem cells and lymphoblastoid cells, we demonstrate that HiCAR identifies high-resolution chromatin contacts with an efficiency comparable with that of in situ Hi-C over all distance ranges. Interestingly, we found that the "poised" gene promoters exhibit silencer-like function to repress the expression of distal genes via promoter-promoter interactions. Lastly, we applied HiCAR to 30,000 primary human muscle stem cells and demonstrated that HiCAR is capable of analyzing chromatin accessibility and looping using low-input primary cells and clinical samples.


Subject(s)
Chromatin , Regulatory Sequences, Nucleic Acid , Chromatin/genetics , DNA , Gene Expression Regulation , Humans , Promoter Regions, Genetic
13.
Nature ; 590(7844): 129-133, 2021 02.
Article in English | MEDLINE | ID: mdl-33408418

ABSTRACT

Regeneration is a complex chain of events that restores a tissue to its original size and shape. The tissue-wide coordination of cellular dynamics that is needed for proper morphogenesis is challenged by the large dimensions of regenerating body parts. Feedback mechanisms in biochemical pathways can provide effective communication across great distances1-5, but how they might regulate growth during tissue regeneration is unresolved6,7. Here we report that rhythmic travelling waves of Erk activity control the growth of bone in time and space in regenerating zebrafish scales, millimetre-sized discs of protective body armour. We find that waves of Erk activity travel across the osteoblast population as expanding concentric rings that are broadcast from a central source, inducing ring-like patterns of tissue growth. Using a combination of theoretical and experimental analyses, we show that Erk activity propagates as excitable trigger waves that are able to traverse the entire scale in approximately two days and that the frequency of wave generation controls the rate of scale regeneration. Furthermore, the periodic induction of synchronous, tissue-wide activation of Erk in place of travelling waves impairs tissue growth, which indicates that wave-distributed Erk activation is key to regeneration. Our findings reveal trigger waves as a regulatory strategy to coordinate cell behaviour and instruct tissue form during regeneration.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System , Osteoblasts/cytology , Osteoblasts/metabolism , Regeneration , Zebrafish/physiology , Animal Scales/cytology , Animal Scales/enzymology , Animal Scales/growth & development , Animal Scales/physiology , Animals , Diffusion , Female , Male , Zebrafish/growth & development
14.
Cancer Res ; 81(5): 1388-1397, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33184108

ABSTRACT

Defects in DNA repair and the protection of stalled DNA replication forks are thought to underlie the chemosensitivity of tumors deficient in the hereditary breast cancer genes BRCA1 and BRCA2 (BRCA). Challenging this assumption are recent findings that indicate chemotherapies, such as cisplatin used to treat BRCA-deficient tumors, do not initially cause DNA double-strand breaks (DSB). Here, we show that ssDNA replication gaps underlie the hypersensitivity of BRCA-deficient cancer and that defects in homologous recombination (HR) or fork protection (FP) do not. In BRCA-deficient cells, ssDNA gaps developed because replication was not effectively restrained in response to stress. Gap suppression by either restoration of fork restraint or gap filling conferred therapy resistance in tissue culture and BRCA patient tumors. In contrast, restored FP and HR could be uncoupled from therapy resistance when gaps were present. Moreover, DSBs were not detected after therapy when apoptosis was inhibited, supporting a framework in which DSBs are not directly induced by genotoxic agents, but rather are induced from cell death nucleases and are not fundamental to the mechanism of action of genotoxic agents. Together, these data indicate that ssDNA replication gaps underlie the BRCA cancer phenotype, "BRCAness," and we propose they are fundamental to the mechanism of action of genotoxic chemotherapies. SIGNIFICANCE: This study suggests that ssDNA replication gaps are fundamental to the toxicity of genotoxic agents and underlie the BRCA-cancer phenotype "BRCAness," yielding promising biomarkers, targets, and opportunities to resensitize refractory disease.See related commentary by Canman, p. 1214.


Subject(s)
BRCA2 Protein , DNA Replication , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , DNA Breaks, Double-Stranded , DNA Repair/genetics , Genes, BRCA2 , Homologous Recombination , Humans
15.
PLoS One ; 15(11): e0242030, 2020.
Article in English | MEDLINE | ID: mdl-33156866

ABSTRACT

Sequence logos have been widely used as graphical representations of conserved nucleic acid and protein motifs. Due to the complexity of the amino acid (AA) alphabet, rich post-translational modification, and diverse subcellular localization of proteins, few versatile tools are available for effective identification and visualization of protein motifs. In addition, various reduced AA alphabets based on physicochemical, structural, or functional properties have been valuable in the study of protein alignment, folding, structure prediction, and evolution. However, there is lack of tools for applying reduced AA alphabets to the identification and visualization of statistically significant motifs. To fill this gap, we developed an R/Bioconductor package dagLogo, which has several advantages over existing tools. First, dagLogo allows various formats for input sets and provides comprehensive options to build optimal background models. It implements different reduced AA alphabets to group AAs of similar properties. Furthermore, dagLogo provides statistical and visual solutions for differential AA (or AA group) usage analysis of both large and small data sets. Case studies showed that dagLogo can better identify and visualize conserved protein sequence patterns from different types of inputs and can potentially reveal the biological patterns that could be missed by other logo generators.


Subject(s)
Amino Acids/genetics , Algorithms , Amino Acid Motifs/genetics , Conserved Sequence/genetics , Databases, Protein , Humans , Position-Specific Scoring Matrices , Proteins/genetics , Proteomics/methods , Sequence Alignment/methods , Software
16.
Cell Rep ; 32(9): 108089, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32877671

ABSTRACT

Zebrafish regenerate heart muscle through division of pre-existing cardiomyocytes. To discover underlying regulation, we assess transcriptome datasets for dynamic gene networks during heart regeneration and identify suppression of genes associated with the transcription factor Tp53. Cardiac damage leads to fluctuation of Tp53 protein levels, concomitant with induced expression of its central negative regulator, mdm2, in regenerating cardiomyocytes. Zebrafish lacking functional Tp53 display increased indicators of cardiomyocyte proliferation during regeneration, whereas transgenic Mdm2 blockade inhibits injury-induced cardiomyocyte proliferation. Induced myocardial overexpression of the mitogenic factors Nrg1 or Vegfaa in the absence of injury also upregulates mdm2 and suppresses Tp53 levels, and tp53 mutations augment the mitogenic effects of Nrg1. mdm2 induction is spatiotemporally associated with markers of de-differentiation in injury and growth contexts, suggesting a broad role in cardiogenesis. Our findings reveal myocardial Tp53 suppression by mitogen-induced Mdm2 as a regulatory component of innate cardiac regeneration.


Subject(s)
Myocardium/metabolism , Myocytes, Cardiac/metabolism , Regeneration/physiology , Tumor Suppressor Protein p53/genetics , Zebrafish Proteins/genetics , Animals , Cell Proliferation/physiology , Genes, p53 , Myocardium/cytology , Myocytes, Cardiac/cytology , Zebrafish
17.
Development ; 147(14)2020 07 30.
Article in English | MEDLINE | ID: mdl-32665240

ABSTRACT

To identify candidate tissue regeneration enhancer elements (TREEs) important for zebrafish fin regeneration, we performed ATAC-seq from bulk tissue or purified fibroblasts of uninjured and regenerating caudal fins. We identified tens of thousands of DNA regions from each sample type with dynamic accessibility during regeneration, and assigned these regions to proximal genes with corresponding expression changes by RNA-seq. To determine whether these profiles reveal bona fide TREEs, we tested the sufficiency and requirements of several sequences in stable transgenic lines and mutant lines with homozygous deletions. These experiments validated new non-coding regulatory sequences near induced and/or essential genes during fin regeneration, including fgf20a, mdka and cx43, identifying distinct domains of directed expression for each confirmed TREE. Whereas deletion of the previously identified LEN enhancer abolished detectable induction of the nearby leptin b gene during regeneration, deletions of enhancers linked to fgf20a, mdka and cx43 had no effect or partially reduced gene expression. Our study generates a new resource for dissecting the regulatory mechanisms of appendage generation and reveals a range of requirements for individual TREEs in control of regeneration programs.


Subject(s)
Animal Fins/metabolism , Enhancer Elements, Genetic/genetics , Regeneration/physiology , Zebrafish/metabolism , Animal Fins/physiology , Animals , Animals, Genetically Modified/metabolism , Chromatin/metabolism , Chromatin Assembly and Disassembly , Connexin 43/genetics , Connexin 43/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , Leptin/genetics , Leptin/metabolism , Midkine/genetics , Midkine/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
18.
Nat Cell Biol ; 22(8): 934-946, 2020 08.
Article in English | MEDLINE | ID: mdl-32661339

ABSTRACT

Stem cells undergo dynamic changes in response to injury to regenerate lost cells. However, the identity of transitional states and the mechanisms that drive their trajectories remain understudied. Using lung organoids, multiple in vivo repair models, single-cell transcriptomics and lineage tracing, we find that alveolar type-2 epithelial cells undergoing differentiation into type-1 cells acquire pre-alveolar type-1 transitional cell state (PATS) en route to terminal maturation. Transitional cells undergo extensive stretching during differentiation, making them vulnerable to DNA damage. Cells in the PATS show an enrichment of TP53, TGFß, DNA-damage-response signalling and cellular senescence. Gain and loss of function as well as genomic binding assays revealed a direct transcriptional control of PATS by TP53 signalling. Notably, accumulation of PATS-like cells in human fibrotic lungs was observed, suggesting persistence of the transitional state in fibrosis. Our study thus implicates a transient state associated with senescence in normal epithelial tissue repair and its abnormal persistence in disease conditions.


Subject(s)
Alveolar Epithelial Cells , Cell Differentiation , Pulmonary Fibrosis/pathology , Adult Stem Cells/pathology , Alveolar Epithelial Cells/pathology , Animals , Cell Lineage , Cell Shape , Cellular Senescence , DNA Damage , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Male , Mice , Mice, Inbred C57BL , Organoids , Pulmonary Fibrosis/genetics , Signal Transduction , Tumor Suppressor Protein p53/metabolism
19.
Nat Commun ; 11(1): 2606, 2020 05 25.
Article in English | MEDLINE | ID: mdl-32451376

ABSTRACT

Nucleoporin proteins (Nups) have been proposed to mediate spatial and temporal chromatin organization during gene regulation. Nevertheless, the molecular mechanisms in mammalian cells are not well understood. Here, we report that Nucleoporin 153 (NUP153) interacts with the chromatin architectural proteins, CTCF and cohesin, and mediates their binding across cis-regulatory elements and TAD boundaries in mouse embryonic stem (ES) cells. NUP153 depletion results in altered CTCF and cohesin binding and differential gene expression - specifically at the bivalent developmental genes. To investigate the molecular mechanism, we utilize epidermal growth factor (EGF)-inducible immediate early genes (IEGs). We find that NUP153 controls CTCF and cohesin binding at the cis-regulatory elements and POL II pausing during the basal state. Furthermore, efficient IEG transcription relies on NUP153. We propose that NUP153 links the nuclear pore complex (NPC) to chromatin architecture allowing genes that are poised to respond rapidly to developmental cues to be properly modulated.


Subject(s)
CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Nuclear Pore Complex Proteins/metabolism , Animals , CCCTC-Binding Factor/chemistry , Cell Cycle Proteins/chemistry , Cell Line , Chromatin/chemistry , Chromatin/genetics , Chromosomal Proteins, Non-Histone/chemistry , Genes, Immediate-Early , HeLa Cells , Humans , Mice , Mouse Embryonic Stem Cells/metabolism , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/deficiency , Nuclear Pore Complex Proteins/genetics , Protein Binding , Protein Interaction Domains and Motifs , RNA Polymerase II/metabolism , Regulatory Elements, Transcriptional , Cohesins
20.
PLoS Genet ; 16(4): e1008600, 2020 04.
Article in English | MEDLINE | ID: mdl-32343701

ABSTRACT

Upon exposure to environmental stressors, cells transiently arrest the cell cycle while they adapt and restore homeostasis. A challenge for all cells is to distinguish between stress signals and coordinate the appropriate adaptive response with cell cycle arrest. Here we investigate the role of the phosphatase calcineurin (CN) in the stress response and demonstrate that CN activates the Hog1/p38 pathway in both yeast and human cells. In yeast, the MAPK Hog1 is transiently activated in response to several well-studied osmostressors. We show that when a stressor simultaneously activates CN and Hog1, CN disrupts Hog1-stimulated negative feedback to prolong Hog1 activation and the period of cell cycle arrest. Regulation of Hog1 by CN also contributes to inactivation of multiple cell cycle-regulatory transcription factors (TFs) and the decreased expression of cell cycle-regulated genes. CN-dependent downregulation of G1/S genes is dependent upon Hog1 activation, whereas CN inactivates G2/M TFs through a combination of Hog1-dependent and -independent mechanisms. These findings demonstrate that CN and Hog1 act in a coordinated manner to inhibit multiple nodes of the cell cycle-regulatory network. Our results suggest that crosstalk between CN and stress-activated MAPKs helps cells tailor their adaptive responses to specific stressors.


Subject(s)
Calcineurin/metabolism , Cell Cycle , Mitogen-Activated Protein Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Stress, Physiological/physiology , Cell Cycle/genetics , Cell Cycle Proteins/metabolism , Down-Regulation , Feedback, Physiological , Gene Expression Regulation, Fungal , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Stress, Physiological/genetics , Transcription Factors/chemistry , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...