Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Pharmacother ; 177: 117134, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39013225

ABSTRACT

Gastrointestinal cancer is among the most common cancers worldwide. Immune checkpoint inhibitor-based cancer immunotherapy has become an innovative approach in cancer treatment; however, its efficacy in gastrointestinal cancer is limited by the absence of infiltration of immune cells within the tumor microenvironment. Therefore, it is therefore urgent to develop a novel therapeutic drug to enhance immunotherapy. In this study, we describe a previously unreported potentiating effect of Icariside I (ICA I, GH01), the main bioactive compound isolated from the Epimedium species, on anti-tumor immune responses. Mechanistically, molecular docking and SPR assay result show that ICA I binding with TRPV4. ICA I induced intracellular Ca2+ increasing and mitochondrial DNA release by targeting TRPV4, which triggered cytosolic ox-mitoDNA release. Importantly, these intracellular ox-mitoDNA fragments were taken up by immune cells in the tumor microenvironment, which amplified the immune response. Moreover, our study shows the remarkable efficacy of sequential administration of ICA I and anti-α-PD-1 mAb in advanced tumors and provides a strong scientific rationale for recommending such a combination therapy for clinical trials. ICA I enhanced the anti-tumor effects with PD-1 inhibitors by regulating the TRPV4/Ca2+/Ox-mitoDNA/cGAS/STING axis. We expect that these findings will be translated into clinical therapies, which will benefit more patients with cancer in the near future.


Subject(s)
Flavonoids , Gastrointestinal Neoplasms , Immunotherapy , Membrane Proteins , TRPV Cation Channels , Humans , TRPV Cation Channels/metabolism , TRPV Cation Channels/antagonists & inhibitors , Membrane Proteins/metabolism , Animals , Immunotherapy/methods , Cell Line, Tumor , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/immunology , Gastrointestinal Neoplasms/pathology , Flavonoids/pharmacology , Tumor Microenvironment/drug effects , Up-Regulation/drug effects , Signal Transduction/drug effects , Mice , Drug Synergism , Immune Checkpoint Inhibitors/pharmacology , Female , Mice, Inbred BALB C , DNA, Mitochondrial , Molecular Docking Simulation
2.
Int J Biol Macromol ; 275(Pt 2): 133698, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972654

ABSTRACT

Cancer stem cells (CSCs) play a substantial role in cancer onset and recurrence. Anomalous iron and lipid metabolism have been documented in CSCs, suggesting that ferroptosis, a recently discovered form of regulated cell death characterised by lipid peroxidation, could potentially exert a significant influence on CSCs. However, the precise role of ferroptosis in gastric cancer stem cells (GCSCs) remains unknown. To address this gap, we screened ferroptosis-related genes in GCSCs using The Cancer Genome Atlas and corroborated our findings through quantitative polymerase chain reaction and western blotting. These results indicate that stearoyl-CoA desaturase (SCD1) is a key player in the regulation of ferroptosis in GCSCs. This study provides evidence that SCD1 positively regulates the transcription of squalene epoxidase (SQLE) by eliminating transcriptional inhibition of P53. This mechanism increases the cholesterol content and the elevated cholesterol regulated by SCD1 inhibits ferroptosis via the mTOR signalling pathway. Furthermore, our in vivo studies showed that SCD1 knockdown or regulation of cholesterol intake affects the stemness of GCSCs and their sensitivity to ferroptosis inducers. Thus, targeting the SCD1/squalene epoxidase/cholesterol signalling axis in conjunction with ferroptosis inducers may represent a promising therapeutic approach for the treatment of gastric cancer based on GCSCs.


Subject(s)
Cholesterol , Ferroptosis , Neoplastic Stem Cells , Signal Transduction , Squalene Monooxygenase , Stearoyl-CoA Desaturase , Stomach Neoplasms , TOR Serine-Threonine Kinases , Ferroptosis/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , TOR Serine-Threonine Kinases/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Humans , Squalene Monooxygenase/metabolism , Squalene Monooxygenase/genetics , Cholesterol/metabolism , Cell Line, Tumor , Animals , Mice , Gene Expression Regulation, Neoplastic
3.
Gut Microbes ; 16(1): 2307542, 2024.
Article in English | MEDLINE | ID: mdl-38319728

ABSTRACT

The gut microbiota and Short-chain fatty acids (SCFAs) can influence the progression of diseases, yet the role of these factors on gastric cancer (GC) remains uncertain. In this work, the analysis of the gut microbiota composition and SCFA content in the blood and feces of both healthy individuals and GC patients indicated that significant reductions in the abundance of intestinal bacteria involved in SCFA production were observed in GC patients compared with the controls. ABX mice transplanted with fecal microbiota from GC patients developed more tumors during the induction of GC and had lower levels of butyric acid. Supplementation of butyrate during the induction of gastric cancer along with H. pylori and N-methyl-N-nitrosourea (MNU) in WT in GPR109A-/-mice resulted in fewer tumors and more IFN-γ+ CD8+ T cells, but this effect was significantly weakened after knockout of GPR109A. Furthermore, In vitro GC cells and co-cultured CD8+ T cells or CAR-Claudin 18.2+ CD8+ T cells, as well as in vivo tumor-bearing studies, have indicated that butyrate enhanced the killing function of CD8+ T cells or CAR-Claudin 18.2+ CD8+ T cells against GC cells through G protein-coupled receptor 109A (GPR109A) and homologous domain protein homologous box (HOPX). Together, these data highlighted that the restoration of gut microbial butyrate enhanced CD8+ T cell cytotoxicity via GPR109A/HOPX, thus inhibiting GC carcinogenesis, which suggests a novel theoretical foundation for GC management against GC.


Subject(s)
Gastrointestinal Microbiome , Stomach Neoplasms , Humans , Mice , Animals , Butyrates/metabolism , Gastrointestinal Microbiome/physiology , CD8-Positive T-Lymphocytes , Fatty Acids, Volatile/metabolism , Butyric Acid , Claudins
SELECTION OF CITATIONS
SEARCH DETAIL