Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
1.
J Org Chem ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018181

ABSTRACT

With an inexpensive and commercially available WO3 semiconductor as the heterogeneous photocatalyst, a catalytic amount of NPh3 as the single-electron donor, and ambient air as the single-electron acceptor and oxygen source, the semiheterogeneous photocatalytic hydroxylation of alkyl and aryl boronic acids was developed. A broad range of hydroxylated compounds can be obtained in excellent yields.

2.
Cell Chem Biol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39025070

ABSTRACT

Morphinan antagonists, which block opioid effects at mu-opioid receptors, have been studied for their analgesic potential. Previous studies have suggested that these antagonists elicit analgesia with fewer adverse effects in the presence of the mutant mu-opioid receptor (MOR; S196A). However, introducing a mutant receptor for medical applications represents significant challenges. We hypothesize that binding a chemical compound to the MOR may elicit a comparable effect to the S196A mutation. Through high-throughput screening and structure-activity relationship studies, we identified a modulator, 4-(2-(4-fluorophenyl)-4-oxothiazolidin-3-yl)-3-methylbenzoic acid (BPRMU191), which confers agonistic properties to small-molecule morphinan antagonists, which induce G protein-dependent MOR activation. Co-application of BPRMU191 and morphinan antagonists resulted in MOR-dependent analgesia with diminished side effects, including gastrointestinal dysfunction, antinociceptive tolerance, and physical and psychological dependence. Combining BPRMU191 and morphinan antagonists could serve as a potential therapeutic strategy for severe pain with reduced adverse effects and provide an avenue for studying G protein-coupled receptor modulation.

3.
Materials (Basel) ; 17(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38793312

ABSTRACT

This article presents a systematic review of the most cutting-edge research on precast pavement technology for the first time. Firstly, precast pavement is divided into two categories, precast cement concrete pavement and precast carpeted flexible pavement, according to the application of precast technology in pavement engineering. Subsequently, the structural characteristics, advantages, and disadvantages of various precast pavement systems are compared and analyzed; technical problems in precast pavement systems are explained; and future development directions are identified. In addition, the text specifically mentions the great contribution of precast carpeted flexible pavement technology in reducing the harmful effects of asphalt fumes on humans and the environment. This work will promote the application of prefabrication in road engineering and provide suggestions and references for subsequent research.

4.
J Ethnopharmacol ; 331: 118275, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38729534

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Da-Jian-Zhong decoction (DJZD) is a herbal formula clinically used for abdominal pain and diarrhea induced by spleen-Yang deficiency syndrome. Recently, treatment of diarrhea-predominant irritable bowel syndrome (IBS-D) with DJZD has received increasing attention, but the underlying mechanism of action remains elusive. AIM OF THE STUDY: We aimed to evaluate the therapeutic effect of DJZD on IBS-D rats and to elucidate the underlying mechanisms. MATERIALS AND METHODS: An IBS-D rats model was constructed using a two-factor superposition method of neonatal maternal separation and Senna folium aqueous extract lavage. Moreover, the effect of DJZD was evaluated based on the body weight, rectal temperature, abdominal withdrawal reflex (AWR), and Bristol stool scale score (BSS). The factors that regulate the DJZD effects on IBS-D were estimated using whole microbial genome, transcriptome sequencing (RNA-Seq), flow cytometry, and quantitative reverse transcription polymerase chain reaction (RT-qPCR) analyses. RESULTS: We found that DJZD alleviated the symptoms of IBS-D rats, with the low-dose (2.4 g/kg) as the better ones, as shown by the higher body weight and lower AWR score and BSS. At the phylum level, the relative abundance of Bacteroidetes was obviously increased, and at the genus level, Lactobacillus and Parabacteroides were increased, while that of Firmicutes_bacterium_424 and Ruminococcus gnavus was decreased in DJZD group. Furthermore, the significantly enriched GO terms after treatment with DJZD mainly included the immune response, positive regulation of activated T cell proliferation, and positive regulation of interleukin-17 (IL-17) production. Importantly, flow cytometry analysis further revealed that the T helper cell type 17/regulatory T cell (Th17/Treg) balance contributed to the DJZD-induced alleviation of IBS-D symptoms, as DJZD downregulated Th17/Treg ratio and Th17 cell-related cytokines IL-17 and IL-6 levels in the colon. CONCLUSIONS: These results demonstrated that DJZD has a good therapeutic effect on IBS-D rats, probably by maintaining the homeostasis of gut microbiota and regulating Th17/Treg balance and its related inflammatory factors.


Subject(s)
Diarrhea , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Irritable Bowel Syndrome , Rats, Sprague-Dawley , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Irritable Bowel Syndrome/drug therapy , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Diarrhea/drug therapy , Th17 Cells/drug effects , Th17 Cells/immunology , Male , T-Lymphocytes, Regulatory/drug effects , Rats , Disease Models, Animal , Female
5.
Cell Rep ; 43(6): 114285, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38819987

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a plasma protein that controls cholesterol homeostasis. Here, we design a human PCSK9 mimic, named HIT01, with no consecutive 9-residue stretch in common with any human protein as a potential heart attack vaccine. Murine immunizations with HIT01 reduce low-density lipoprotein (LDL) and cholesterol levels by 40% and 30%, respectively. Immunization of cynomolgus macaques with HIT01-K21Q-R218E, a cleavage-resistant variant, elicits high-titer PCSK9-directed antibody responses and significantly reduces serum levels of cholesterol 2 weeks after each immunization. However, HIT01-K21Q-R218E immunizations also increase serum PCSK9 levels by up to 5-fold, likely due to PCSK9-binding antibodies altering the half-life of PCSK9. While vaccination with a PCSK9 mimic can induce antibodies that block interactions of PCSK9 with the LDL receptor, PCSK9-binding antibodies appear to alter homeostatic levels of PCSK9, thereby confounding its vaccine impact. Our results nevertheless suggest a mechanism for increasing the half-life of soluble regulatory factors by vaccination.


Subject(s)
Cholesterol , Immunization , Macaca fascicularis , Proprotein Convertase 9 , Proprotein Convertase 9/immunology , Proprotein Convertase 9/metabolism , Animals , Humans , Mice , Cholesterol/metabolism , Cholesterol/blood , Immunization/methods , Receptors, LDL/metabolism , Female , Mice, Inbred C57BL
6.
J Org Chem ; 89(9): 6117-6125, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38654588

ABSTRACT

The first paired electrolysis-enabled arylation of quinoxalin-2(1H)-ones was achieved using cyanoarenes as the arylation reagents. A variety of 3-arylquinoxalin-2(1H)-ones with various important functional groups were obtained in moderate to good yields under metal- and chemical oxidant-free conditions. With a pair of reductive and oxidative processes occurring among the substrates and reaction intermediates, the power consumption can be dramatically reduced.

7.
Front Immunol ; 15: 1365803, 2024.
Article in English | MEDLINE | ID: mdl-38646520

ABSTRACT

Introduction: Angiotensin converting-enzyme 2 (ACE2) is an enzyme catalyzing the conversion of angiotensin 2 into angiotensin 1-7. ACE2 also serves as the receptor of several coronaviruses, including SARS-CoV-1 and SARS-CoV-2. Therefore, ACE2 could be utilized as a therapeutic target for treating these coronaviruses, ideally lacking enzymatic function. Methods: Based on structural analysis, specific mutations were introduced to generate mutants of ACE2 and ACE2-Fc (fusion protein of ACE2 and Fc region of IgG1). The enzyme activity, binding affinity, and neutralization abilities were measured. Results and discussion: As predicted, five mutants (AMI081, AMI082, AMI083, AMI084, AMI090) have completely depleted ACE2 enzymatic activities. More importantly, enzyme-linked receptor-ligand assay (ELRLA) and surface plasmon resonance (SPR) results showed that 2 mutants (AMI082, AMI090) maintained binding activity to the viral spike proteins of SARS-CoV-1 and SARS-CoV-2. In An in vitro neutralization experiment using a pseudovirus, SARS-CoV-2 S1 spike protein-packed lentivirus particles, was also performed, showing that AMI082 and AMI090 significantly reduced GFP transgene expression. Further, in vitro virulent neutralization assays using SARS-CoV-2 (strain name: USA-WA1/2020) showed that AMI082 and AMI090 had remarkable inhibitory effects, indicated by comparable IC50 to wildtype ACE2 (5.33 µg/mL). In addition to the direct administration of mutant proteins, an alternative strategy for treating COVID-19 is through AAV delivery to achieve long-lasting effects. Therefore, AAV5 encoding AMI082 and AMI090 were packaged and transgene expression was assessed. In summary, these ACE2 mutants represent a novel approach to prevent or treat COVID-19 and other viruses with the same spike protein.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Humans , SARS-CoV-2/genetics , COVID-19/genetics , COVID-19/virology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Drug Treatment , Antibodies, Neutralizing/immunology , Animals , HEK293 Cells , Protein Binding
8.
Materials (Basel) ; 17(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38473597

ABSTRACT

The continuous growth of industrial solid waste production has generated many environmental problems. We evaluated the potential of industrial solid waste as a substitute filler in asphalt mastic, with the aim of increasing the use of sustainable road construction materials. In this study, X-ray fluorescence spectroscopy (XRF) and scanning electron microscopy (SEM) were used to characterize the oxide composition and micromorphology of limestone (LS), red mud (RM), steel slag (SS), and ground granulated blast-furnace slag (GGBFS). Four asphalt mastics containing LS, RM, SS, and GGBFS with a filler-to-binder weight ratio of one were prepared. An evaluation of the rheology and wetting of the solid-waste-filler asphalt mastic was conducted using a frequency sweep, temperature sweep, linear amplitude sweep (LAS), multiple stress creep and recovery (MSCR), and surface free energy (SFE) methods. The results showed that SS increased the complex modulus, elastic component of the asphalt mastic and decreased the nonrecoverable creep compliance at stress levels of 0.1 and 3.2 kPa, which improved the rutting resistance of the asphalt mastic and reduced deformation under high-temperature conditions. The RM and GGBFS increased the fatigue performance of the asphalt mastic under strain loading, enhanced its fatigue life, and maintained good performance under long-term loading. The dispersive component of the SFE parameter of the solid-waste-filler asphalt mastic was larger than the polar component for the largest share of the surface energy composition. The SFE of the asphalt mastic prepared from the industrial solid-waste filler was reduced; however, the difference was insignificant compared to the limestone asphalt mastic. Solid-waste-filler asphalt mastic has performance characteristics, and its actual application can be based on different performance characteristics to select an appropriate solid-waste filler. The results of this study provide new technological solutions for solving the utilization rate of solid waste materials and sustainable road construction in the future.

9.
Front Med (Lausanne) ; 11: 1302648, 2024.
Article in English | MEDLINE | ID: mdl-38318248

ABSTRACT

Introduction: Recombinant adeno-associated virus (rAAV) vectors provide a safe and efficient means for in vivo gene delivery, although its large-scale production remains challenging. Featuring high manufacturing speed, flexible product design, and inherent safety and scalability, the baculovirus/Sf9 cell system offers a practical solution to the production of rAAV vectors in large quantities and high purity. Nonetheless, removal and inactivation of recombinant baculoviruses during downstream purification of rAAV vectors remain critical prior to clinical application. Methods: The present study utilized a newly developed fluorescent-TCID50 (F-TCID50) assay to determine the infectious titer of recombinant baculovirus (rBV) stock after baculovirus removal and inactivation, and to evaluate the impact of various reagents and solutions on rBV infectivity. Results and discussion: The results showed that a combination of sodium lauryl sulfate (SLS) and Triton X-100 lysis, AAVx affinity chromatography, low pH hold (pH3.0), CsCl ultracentrifugation, and NFR filtration led to effective removal and/or inactivation of recombinant baculoviruses, and achieved a log reduction value (LRV) of more than 18.9 for the entire AAV purification process. In summary, this study establishes a standard protocol for downstream baculovirus removal and inactivation and a reliable F-TCID50 assay to detect rBV infectivity, which can be widely applied in AAV manufacturing using the baculovirus system.

10.
Mol Ther Methods Clin Dev ; 32(1): 101178, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38178916
11.
Sci Transl Med ; 16(730): eadh9039, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38232141

ABSTRACT

The fusion peptide (FP) on the HIV-1 envelope (Env) trimer can be targeted by broadly neutralizing antibodies (bNAbs). Here, we evaluated the ability of a human FP-directed bNAb, VRC34.01, along with two vaccine-elicited anti-FP rhesus macaque mAbs, DFPH-a.15 and DF1W-a.01, to protect against simian-HIV (SHIV)BG505 challenge. VRC34.01 neutralized SHIVBG505 with a 50% inhibitory concentration (IC50) of 0.58 µg/ml, whereas DF1W-a.01 and DFPH-a.15 were 4- or 30-fold less potent, respectively. VRC34.01 was infused into four rhesus macaques at a dose of 10 mg/kg and four rhesus macaques at a dose of 2.5 mg/kg. The animals were intrarectally challenged 5 days later with SHIVBG505. In comparison with all 12 control animals that became infected, all four animals infused with VRC34.01 (10 mg/kg) and three out of four animals infused with VRC34.01 (2.5 mg/kg) remained uninfected. Because of the lower potency of DF1W-a.01 and DFPH-a.15 against SHIVBG505, we infused both Abs at a higher dose of 100 mg/kg into four rhesus macaques each, followed by SHIVBG505 challenge 5 days later. Three of four animals that received DF1W-a.01 were protected against infection, whereas all animals that received DFPH-a.15 were protected. Overall, the protective serum neutralization titers observed in these animals were similar to what has been observed for other bNAbs in similar SHIV infection models and in human clinical trials. In conclusion, FP-directed mAbs can thus provide dose-dependent in vivo protection against mucosal SHIV challenges, supporting the development of prophylactic vaccines targeting the HIV-1 Env FP.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , Macaca mulatta , Broadly Neutralizing Antibodies , HIV Antibodies/therapeutic use , HIV Infections/prevention & control , Antibodies, Monoclonal , Peptides , Antibodies, Neutralizing
12.
Nat Commun ; 15(1): 285, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177144

ABSTRACT

Lassa virus (LASV) infection is expanding outside its traditionally endemic areas in West Africa, posing a pandemic biothreat. LASV-neutralizing antibodies, moreover, have proven difficult to elicit. To gain insight into LASV neutralization, here we develop a prefusion-stabilized LASV glycoprotein trimer (GPC), pan it against phage libraries comprising single-domain antibodies (nanobodies) from shark and camel, and identify one, D5, which neutralizes LASV. Cryo-EM analyses reveal D5 to recognize a cleavage-dependent site-of-vulnerability at the trimer apex. The recognized site appears specific to GPC intermediates, with protomers lacking full cleavage between GP1 and GP2 subunits. Guinea pig immunizations with the prefusion-stabilized cleavage-intermediate LASV GPC, first as trimer and then as a nanoparticle, induce neutralizing responses, targeting multiple epitopes including that of D5; we identify a neutralizing antibody (GP23) from the immunized guinea pigs. Collectively, our findings define a prefusion-stabilized GPC trimer, reveal an apex-situated site-of-vulnerability, and demonstrate elicitation of LASV-neutralizing responses by a cleavage-intermediate LASV trimer.


Subject(s)
Lassa Fever , Single-Domain Antibodies , Animals , Guinea Pigs , Lassa virus , Antibodies, Viral , Antibodies, Neutralizing
13.
Mol Ther ; 32(1): 74-83, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37990495

ABSTRACT

Recombinant adeno-associated virus (rAAV) vectors could be manufactured by plasmid transfection into human embryonic kidney 293 (HEK293) cells or baculovirus infection of Spodoptera frugiperda (Sf9) insect cells. However, systematic comparisons between these systems using large-scale, high-quality AAV vectors are lacking. rAAV from Sf9 cells (Sf9-rAAV) at 2-50 L and HEK293 cells (HEK-rAAV) at 2-200 L scales were characterized. HEK-rAAV had ∼40-fold lower yields but ∼10-fold more host cell DNA measured by droplet digital PCR and next-generation sequencing, respectively. The electron microscope observed a lower full/empty capsid ratio in HEK-rAAV (70.8%) than Sf9-rAAV (93.2%), while dynamic light scattering and high-performance liquid chromatography analysis showed that HEK-rAAV had more aggregation. Liquid chromatography tandem mass spectrometry identified different post-translational modification profiles between Sf9-rAAV and HEK-rAAV. Furthermore, Sf9-rAAV had a higher tissue culture infectious dose/viral genome than HEK-rAAV, indicating better infectivity. Additionally, Sf9-rAAV achieved higher in vitro transgene expression, as measured by ELISA. Finally, after intravitreal dosing into a mouse laser choroidal neovascularization model, Sf9-rAAV and HEK-rAAV achieved similar efficacy. Overall, this study detected notable differences in the physiochemical characteristics of HEK-rAAV and Sf9-rAAV. However, the in vitro and in vivo biological functions of the rAAV from these systems were highly comparable. Sf9-rAAV may be preferred over HEK293-rAAV for advantages in yields, full/empty ratio, scalability, and cost.


Subject(s)
Genetic Vectors , Kidney , Animals , Mice , Humans , HEK293 Cells , Genetic Vectors/genetics , Transfection , Sf9 Cells , Dependovirus/genetics
14.
Chem Commun (Camb) ; 59(94): 14029-14032, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37964611

ABSTRACT

With both ferrocene and air as the redox catalysts, for the first time, the low-cost natural ilmenite (FeTiO3) was successfully used for photocatalytic bond formations. Under the assistance of a traceless H-bond, and HCHO as the methylene reagent, a variety of imidazo[1,5-a]quinoxalinones were semi-heterogeneously photosynthesized in high yields with good functional group compatibility.

16.
J Org Chem ; 88(24): 16790-16796, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38016176

ABSTRACT

A general and efficient method for the synthesis of various selanyl phenanthrenes/polycyclic heteroaromatics through the electrophilic annulation of 2-alkynyl biaryls with diorganyl diselenides under metal-free and mild conditions was established. The sulfanyl phenanthrene was also obtained in moderate yields.

17.
PLoS Pathog ; 19(9): e1011584, 2023 09.
Article in English | MEDLINE | ID: mdl-37738240

ABSTRACT

The Pneumoviridae family of viruses includes human metapneumovirus (HMPV) and respiratory syncytial virus (RSV). The closely related Paramyxoviridae family includes parainfluenza viruses (PIVs). These three viral pathogens cause acute respiratory tract infections with substantial disease burden in the young, the elderly, and the immune-compromised. While promising subunit vaccines are being developed with prefusion-stabilized forms of the fusion glycoproteins (Fs) of RSV and PIVs, for which neutralizing titers elicited by the prefusion (pre-F) conformation of F are much higher than for the postfusion (post-F) conformation, with HMPV, pre-F and post-F immunogens described thus far elicit similar neutralizing responses, and it has been unclear which conformation, pre-F or post-F, would be the most effective HMPV F-vaccine immunogen. Here, we investigate the impact of further stabilizing HMPV F in the pre-F state. We replaced the furin-cleavage site with a flexible linker, creating a single chain F that yielded increased amounts of pre-F stabilized trimers, enabling the generation and assessment of F trimers stabilized by multiple disulfide bonds. Introduced prolines could increase both expression yields and antigenic recognition by the pre-F specific antibody, MPE8. The cryo-EM structure of a triple disulfide-stabilized pre-F trimer with the variable region of antibody MPE8 at 3.25-Å resolution confirmed the formation of designed disulfides and provided structural details on the MPE8 interface. Immunogenicity assessments in naïve mice showed the triple disulfide-stabilized pre-F trimer could elicit high titer neutralization, >10-fold higher than elicited by post-F. Immunogenicity assessments in pre-exposed rhesus macaques showed the triple disulfide-stabilized pre-F could recall high neutralizing titers after a single immunization, with little discrimination in the recall response between pre-F and post-F immunogens. However, the triple disulfide-stabilized pre-F adsorbed HMPV-directed responses from commercially available pooled human immunoglobulin more fully than post-F. Collectively, these results suggest single-chain triple disulfide-stabilized pre-F trimers to be promising HMPV-vaccine antigens.


Subject(s)
Metapneumovirus , Respiratory Syncytial Virus, Human , Aged , Humans , Animals , Mice , Macaca mulatta , Antibodies , Antigens, Viral , Disulfides , Glycoproteins , Parainfluenza Virus 1, Human
18.
Vaccines (Basel) ; 11(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37766115

ABSTRACT

New vaccine delivery technologies, such as mRNA, have played a critical role in the rapid and efficient control of SARS-CoV-2, helping to end the COVID-19 pandemic. Enveloped virus-like particles (eVLPs) are often more immunogenic than protein subunit immunogens and could be an effective vaccine platform. Here, we investigated whether the genetic delivery of eVLPs could achieve strong immune responses in mice as previously reported with the immunization of in vitro purified eVLPs. We utilized Newcastle disease virus-like particles (NDVLPs) to display SARS-CoV-2 prefusion-stabilized spikes from the WA-1 or Beta variant (S-2P or S-2Pᵦ, respectively) and evaluated neutralizing murine immune responses achieved by a single-gene-transcript DNA construct for the WA-1 or Beta variant (which we named S-2P-NDVLP-1T and S-2Pᵦ-NDVLP-1T, respectively), by multiple-gene-transcript DNA constructs for the Beta variant (S-2Pᵦ-NDVLP-3T), and by a protein subunit-DNA construct for the WA-1 or Beta variant (S-2P-TM or S-2Pᵦ-TM, respectively). The genetic delivery of S-2P-NDVLP-1T or S-2Pᵦ-NDVLP-1T yielded modest neutralizing responses after a single immunization and high neutralizing responses after a second immunization, comparable to previously reported results in mice immunized with in vitro purified S-2P-NDVLPs. Notably, genetic delivery of S-2Pᵦ-NDVLP-3T yielded significantly higher neutralizing responses in mice after a second immunization than S-2Pᵦ-NDVLP-1T or S-2Pᵦ-TM. Genetic delivery also elicited high spike-specific T-cell responses. Collectively, these results indicate that genetic delivery can provide an effective means to immunize eVLPs and that a multiple-gene transcript eVLP platform may be especially efficacious and inform the design of improved vaccines.

19.
ACS Sens ; 8(10): 3744-3753, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37773014

ABSTRACT

Circulating tumor cells (CTCs) are valuable circulating biomarkers of cancer, which carry primary tumor information and may provide real-time assessment of tumor status as well as treatment response in cancer patients. Herein, we developed a novel assay for accurate diagnosis and dynamic monitoring of epithelial ovarian cancer (EOC) using CTC RNA analysis. Multiantibody-modified magnetic nanoparticles were prepared for purification of EOC CTCs from whole blood samples of clinical patients. Subsequently, nine EOC-specific mRNAs of purified CTCs were quantified using droplet digital PCR. The EOC CTC Score was generated using a multivariate logistic regression model for each sample based on the transcripts of the nine genes. This assay exhibited a distinguishing diagnostic performance for the detection of EOC (n = 17) from benign ovarian tumors (n = 30), with an area under the receiver operating characteristic curve (AUC) of 0.96 (95% CI = 0.91-1.00). Moreover, dynamic changes of the EOC CTC Score were observed in patients undergoing treatment, demonstrating the potential of the assay for monitoring EOC. In conclusion, we present an accurate assay for the diagnosis and monitoring of EOC via CTC RNA analysis, and the results suggest that it may provide a promising solution for the detection and treatment response assessment of EOC.


Subject(s)
Magnetite Nanoparticles , Neoplastic Cells, Circulating , Ovarian Neoplasms , Humans , Female , Carcinoma, Ovarian Epithelial/diagnosis , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , RNA
20.
Sci Rep ; 13(1): 12716, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37543633

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal disorder that causes syndromes characterized by physiological dysfunction in many organs and tissues. Despite the recognizable morphological and behavioral deficits associated with MPS I, neither the underlying alterations in functional neural connectivity nor its restoration following gene therapy have been shown. By employing high-resolution resting-state fMRI (rs-fMRI), we found significant reductions in functional neural connectivity in the limbic areas of the brain that play key roles in learning and memory in MPS I mice, and that adeno-associated virus (AAV)-mediated gene therapy can reestablish most brain connectivity. Using logistic regression in MPS I and treated animals, we identified functional networks with the most alterations. The rs-fMRI and statistical methods should be translatable into clinical evaluation of humans with neurological disorders.


Subject(s)
Mucopolysaccharidosis I , Humans , Animals , Mice , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/therapy , Brain/diagnostic imaging , Genetic Therapy/methods , Brain Mapping/methods , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL