Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 11(5)2022 May 03.
Article in English | MEDLINE | ID: mdl-35625430

ABSTRACT

In the research, we evaluated the effects of high-pressure processing (HPP) on the growth and histamine formation of histamine-forming bacteria (HFB) in yellowfin tuna meat during storage. Tuna meat samples inoculated with the individual HFB species Morganella morganii and Photobacterium phosphoreum were subjected to HPP treatment at 250, 350, 450, and 550 MPa for 5 min, and the changes in bacterial count, total volatile basic nitrogen (TVBN) content, pH, and histamine content during storage at 4 and 15 °C were analyzed. The results indicate that the bacterial counts of the HFB species decreased significantly with increasing pressure, and HFB became undetectable in the samples treated at 450 and 550 MPa. At a storage temperature of 15 °C, the bacterial counts of both HFB species in the control group and samples subjected to HPP treatment at 250 and 350 MPa increased significantly with storage time. The bacterial counts of M. morganii in the samples stored at 4 °C decreased, whereas those of P. phosphoreum increased gradually owing to its psychrophilic nature. HPP treatment (>250 MPa) inhibited the increases in pH and TVBN content of the samples stored at 15 °C and delayed histamine formation in the samples during storage; these effects were more significant as the pressure during HPP treatment was increased.

2.
Foods ; 10(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34681348

ABSTRACT

The microwave-assisted induction heating (MAIH) method-an emerging thermal technique-was studied to heat the prepackaged raw hard clam (Meretrix lusoria). The cooking effects on microbial and physiochemical qualities of clam were investigated. After the heating of the clam meat samples, the aerobic plate count (APC), psychrotrophic bacteria count (PBC), and total volatile basic nitrogen (TVBN) levels decreased with increasing heating time, but the shucking ratio, area shrinkage, and texture (hardness, cohesiveness, and chewiness) increased. In addition, the L* (lightness) and W (whiteness) of the clam meat samples increased significantly at the beginning of the heating period, whereas they decreased significantly with extended heating time. However, a* (redness) had the opposite trend. This study found that when clams were heated for more than 120 s at 130 °C or 150 s at 90 °C, they displayed obvious shrinking and a yellow-brown appearance, indicating that they are overcooked. After heating by MAIH for at least 110 s at 130 °C or 130 s at 90 °C, the samples were cooked well and gains a completely shucking, along with no microbial count detected. Therefore, the results indicated that the optimum heating conditions for prepackaged hard clams subjected to an MAIH machine were 130 °C for 110 s or 90 °C for 130 s.

3.
Protein Expr Purif ; 110: 79-88, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25703054

ABSTRACT

Growth hormone (GH) performs important roles in regulating somatic growth, reproduction, osmoregulation, metabolism and immunity in teleosts, and thus, it has attracted substantial attention in the field of aquaculture application. Herein, giant grouper GH (ggGH) cDNA was cloned into the pET28a vector and expressed in Shuffle® T7 Competent Escherichia coli. Recombinant N-terminal 6× His-tagged ggGH was produced mainly in insoluble inclusion bodies; the recombinant ggGH content reached 20% of total protein. For large-scale ggGH production, high-cell density E. coli culture was achieved via fed-batch culture with pH-stat. After 30h of cultivation, a cell concentration of 41.1g/l dry cell weight with over 95% plasmid stability was reached. Maximal ggGH production (4.0g/l; 22% total protein) was achieved via mid-log phase induction. Various centrifugal forces, buffer pHs and urea concentrations were optimized for isolation and solubilization of ggGH from inclusion bodies. Hydrophobic interactions and ionic interactions were the major forces in ggGH inclusion body formation. Complete ggGH inclusion body solubilization was obtained in PBS buffer at pH 12 containing 3M urea. Through a simple purification process including Ni-NTA affinity chromatography and refolding, 5.7mg of ggGH was obtained from 10ml of fed-batch culture (45% recovery). The sequence and secondary structure of the purified ggGH were confirmed by LC-MS/MS mass spectrometry and circular dichroism analysis. The cell proliferation-promoting activity was confirmed in HepG2, ZFL and GF-1 cells with the WST-1 colorimetric bioassay.


Subject(s)
Fish Proteins/isolation & purification , Growth Hormone/isolation & purification , Inclusion Bodies/chemistry , Plasmids/metabolism , Recombinant Fusion Proteins/isolation & purification , Animals , Batch Cell Culture Techniques , Buffers , Cell Line , Cell Proliferation/drug effects , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/pharmacology , Gene Expression , Growth Hormone/chemistry , Growth Hormone/genetics , Growth Hormone/pharmacology , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Perciformes/metabolism , Plasmids/chemistry , Protein Refolding , Protein Stability , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Solubility , Urea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...