Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Gen Hosp Psychiatry ; 88: 61-67, 2024.
Article in English | MEDLINE | ID: mdl-38508077

ABSTRACT

CONTEXT: Many patients recovering from surgery in wards are disturbed by environmental noise. However, the effects of environmental noise on postoperative pain are unclear. OBJECTIVES: This study aimed to assess the association between postoperative noise and pain. METHODS: This prospective study included 182 women who underwent cesarean sections. Postoperative noise was continuously recorded, and pain intensity at rest was assessed using a numerical rating scale (NRS) for 0-6, 6-12, 12-18, and 18-24 h after the patients were returned to the ward. Cumulative pain scores were calculated by summing the NRS scores at each time point and comprised the primary outcome. The maximum pain NRS score and analgesic consumption during the 24 h after surgery were also recorded. RESULTS: Mean environmental noise intensity during the daytime was an independent factor for cumulative pain scores, maximum pain scores, and analgesic use during the first postoperative 24 h (ß, 0.37; 95% CI, 0.21-0.53 and ß, 0.12; 95% CI, 0.07-0.17; P < 0.001 for both; ß, 0.86; 95% CI, 0.25-1.46; P = 0.006). Cumulative and maximum NRS pain scores as well as the incidence of NRS ≥ 4 were significantly higher in patients under mean daytime environmental noise of ≥58, than <58 decibels (dB) (8.0 [6.0-11.3] vs. 6.0 (5.0-7.0); 3.0 [2.0-4.0] vs. 2.0 [2.0-2.0, and 25.6% vs. 11.0%; RR, 2.32; 95% CI, 1.19-4.54, respectively; P < 0.001 for all). CONCLUSIONS: Higher-level postoperative noise exposure was associated with more severe postoperative pain and increased analgesic needs, as well as a higher incidence of moderate-to-severe pain in patients recovering from cesarean delivery. Our findings indicate that reducing environmental ward noise might benefit for postoperative pain management.


Subject(s)
Analgesics , Pain, Postoperative , Pregnancy , Humans , Female , Prospective Studies , Analgesics/therapeutic use , Pain, Postoperative/epidemiology , Pain, Postoperative/etiology , Pain Measurement , Analgesics, Opioid
2.
Genome Biol ; 24(1): 289, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38098107

ABSTRACT

BACKGROUND: Metabolites play critical roles in regulating nutritional qualities of plants, thereby influencing their consumption and human health. However, the genetic basis underlying the metabolite-based nutrient quality and domestication of root and tuber crops remain largely unknown. RESULTS: We report a comprehensive study combining metabolic and phenotypic genome-wide association studies to dissect the genetic basis of metabolites in the storage root (SR) of cassava. We quantify 2,980 metabolic features in 299 cultivated cassava accessions. We detect 18,218 significant marker-metabolite associations via metabolic genome-wide association mapping and identify 12 candidate genes responsible for the levels of metabolites that are of potential nutritional importance. Me3GT, MeMYB4, and UGT85K4/UGT85K5, which are involved in flavone, anthocyanin, and cyanogenic glucoside metabolism, respectively, are functionally validated through in vitro enzyme assays and in vivo gene silencing analyses. We identify a cluster of cyanogenic glucoside biosynthesis genes, among which CYP79D1, CYP71E7b, and UGT85K5 are highly co-expressed and their allelic combination contributes to low linamarin content. We find MeMYB4 is responsible for variations in cyanidin 3-O-glucoside and delphinidin 3-O-rutinoside contents, thus controlling SR endothelium color. We find human selection affects quercetin 3-O-glucoside content and SR weight per plant. The candidate gene MeFLS1 is subject to selection during cassava domestication, leading to decreased quercetin 3-O-glucoside content and thus increased SR weight per plant. CONCLUSIONS: These findings reveal the genetic basis of cassava SR metabolome variation, establish a linkage between metabolites and agronomic traits, and offer useful resources for genetically improving the nutrition of cassava and other root crops.


Subject(s)
Genome-Wide Association Study , Manihot , Humans , Manihot/genetics , Domestication , Quercetin/metabolism , Glucosides , Nutrients
3.
Microorganisms ; 11(9)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37764163

ABSTRACT

Cassava (Manihot esculenta Crantz) foliage is a byproduct of cassava production characterized by high biomass and nutrient content. In this study, we investigated the effects of cassava foliage on antioxidant capacity, growth performance, and immunity status in goats, as well as rumen fermentation and microbial metabolism. Twenty-five Hainan black goats were randomly divided into five groups (n = 5 per group) and accepted five treatments: 0% (T1), 25% (T2), 50% (T3), 75% (T4), and 100% (T5) of the cassava foliage silage replaced king grass, respectively. The feeding experiment lasted for 70 d (including 10 d adaptation period and 60 d treatment period). Feeding a diet containing 50% cassava foliage resulted in beneficial effects for goat growth and health, as reflected by the higher average daily feed intake (ADFI), average daily gain (ADG) and better feed conversion rate (FCR), as well as by the reduced serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (CRE), and triglycerides (TG). Meanwhile, cassava foliage improved antioxidant activity by increasing the level of glutathion peroxidase (GSH-Px), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) and lowering malondialdehyde (MDA). Moreover, feeding cassava foliage was also beneficial to immunity status by enhancing complement 3 (C3), complement 4 (C4), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM). Furthermore, the addition of dietary cassava foliage also altered rumen fermentation, rumen bacterial community composition, and metabolism. The abundance of Butyrivibrio_2 and Prevotella_1 was elevated, as were the concentrations of beneficial metabolites such as butyric acid; there was a concomitant decline in metabolites that hindered nutrient metabolism and harmed host health. In summary, goats fed a diet containing 50% cassava foliage silage demonstrated a greater abundance of Butyrivibrio_2, which enhanced the production of butyric acid; these changes led to greater antioxidant capacity, growth performance, and immunity in the goats.

4.
Front Plant Sci ; 14: 1181257, 2023.
Article in English | MEDLINE | ID: mdl-37360704

ABSTRACT

Cassava (Manihot esculenta Crantz) leaves are often used as vegetables in Africa. Anthocyanins possess antioxidant, anti-inflammatory, anti-cancer, and other biological activities. They are poor in green leaves but rich in the purple leaves of cassava. The mechanism of anthocyanin's accumulation in cassava is poorly understood. In this study, two cassava varieties, SC9 with green leaves and Ziyehuangxin with purple leaves (PL), were selected to perform an integrative analysis using metabolomics and transcriptomics. The metabolomic analysis indicated that the most significantly differential metabolites (SDMs) belong to anthocyanins and are highly accumulated in PL. The transcriptomic analysis revealed that differentially expressed genes (DEGs) are enriched in secondary metabolites biosynthesis. The analysis of the combination of metabolomics and transcriptomics showed that metabolite changes are associated with the gene expressions in the anthocyanin biosynthesis pathway. In addition, some transcription factors (TFs) may be involved in anthocyanin biosynthesis. To further investigate the correlation between anthocyanin accumulation and color formation in cassava leaves, the virus-induced gene silencing (VIGS) system was used. VIGS-MeANR silenced plant showed the altered phenotypes of cassava leaves, partially from green to purple color, resulting in a significant increase of the total anthocyanin content and reduction in the expression of MeANR. These results provide a theoretical basis for breeding cassava varieties with anthocyanin-rich leaves.

5.
Int J Mol Sci ; 24(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37108399

ABSTRACT

As a starchy and edible tropical plant, cassava (Manihot esculenta Crantz) has been widely used as an industrial raw material and a dietary source. However, the metabolomic and genetic differences in specific germplasms of cassava storage root were unclear. In this study, two specific germplasms, M. esculenta Crantz cv. sugar cassava GPMS0991L and M. esculenta Crantz cv. pink cassava BRA117315, were used as research materials. Results showed that sugar cassava GPMS0991L was rich in glucose and fructose, whereas pink cassava BRA117315 was rich in starch and sucrose. Metabolomic and transcriptomic analysis indicated that sucrose and starch metabolism had significantly changing metabolites enrichment and the highest degree of differential expression genes, respectively. Sugar transport in storage roots may contribute to the activities of sugar, which will eventually be exported to transporters (SWEETs), such as (MeSWEET1a, MeSWEET2b, MeSWEET4, MeSWEET5, MeSWEET10b, and MeSWEET17c), which transport hexose to plant cells. The expression level of genes involved in starch biosynthesis and metabolism were altered, which may result in starch accumulation. These results provide a theoretical basis for sugar transport and starch accumulation and may be useful in improving the quality of tuberous crops and increasing yield.


Subject(s)
Manihot , Starch , Starch/metabolism , Manihot/genetics , Manihot/metabolism , Transcriptome , Plant Roots/genetics , Plant Roots/metabolism , Glucose/metabolism , Sucrose/metabolism
6.
Front Plant Sci ; 13: 901128, 2022.
Article in English | MEDLINE | ID: mdl-35789698

ABSTRACT

The basic helix-loop-helix (bHLH) proteins are a large superfamily of transcription factors, and play a central role in a wide range of metabolic, physiological, and developmental processes in higher organisms. However, systematic investigation of bHLH gene family in cassava (Manihot esculenta Crantz) has not been reported. In the present study, we performed a genome-wide survey and identified 148 MebHLHs genes were unevenly harbored in 18 chromosomes. Through phylogenetic analyses along with Arabidopsis counterparts, these MebHLHs genes were divided into 19 groups, and each gene contains a similar structure and conserved motifs. Moreover, many cis-acting regulatory elements related to various defense and stress responses showed in MebHLH genes. Interestingly, transcriptome data analyses unveiled 117 MebHLH genes during postharvest physiological deterioration (PPD) process of cassava tuberous roots, while 65 MebHLH genes showed significantly change. Meanwhile, the relative quantitative analysis of 15 MebHLH genes demonstrated that they were sensitive to PPD, suggesting they may involve in PPD process regulation. Cyanogenic glucosides (CGs) biosynthesis during PPD process was increased, silencing of MebHLH72 and MebHLH114 showed that linamarin content was significantly decreased in the leaves. To summarize, the genome-wide identification and expression profiling of MebHLH candidates pave a new avenue for uderstanding their function in PPD and CGs biosynthesis, which will accelerate the improvement of PPD tolerance and decrease CGs content in cassava tuberous roots.

7.
Front Microbiol ; 12: 663781, 2021.
Article in English | MEDLINE | ID: mdl-34858357

ABSTRACT

Soil microbes play an important role in the ecosystem and have a relationship with plant growth, development, and production. There are only a few reports on the effects of planting patterns of cassava on the microbial community structure in the rhizospheric soil. Here, we investigated the effects of different fertilization on the microbial community structure in the cassava rhizospheric soil. SC205 cultivar was used in this study as the experimental material. Compound fertilizer (CF) and reduced fertilizer (RF) were applied to the soil prior to planting. Soil samples were collected before harvest, and fungi were analyzed using IonS5TMXL sequencing platform. Results showed that CF and RF treatments significantly increased cassava yield. Amplicon sequencing result indicated that the fungi richness in rhizospheric soil of cassava was increased after CF was applied, and the diversity was decreased. However, the fungal diversity and richness were decreased in rhizospheric soil after RF was applied. The most dominant fungal phylum was Ascomycota, which increased after fertilization. In addition, the abundance of beneficial fungi such as Chaetomium increased after fertilization, while that of pathogenic fungi such as Fusarium solani was decreased. The composition of the fungal community in rhizospheric soil with CF and RF applied was similar, but the richness and diversity of fungi were different. Canonical correspondence analysis (CCA) indicates there was a positive correlation between soil nutrition and fungal community structure. Overall, our results indicate that fertilization alters the fungal community structure of cassava rhizospheric soil, such that the abundance of potentially beneficial fungi increased, while that of potentially pathogenic fungi decreased, thereby significantly promoting plant growth and yield of cassava. Thus, during actual production, attention should be paid to maintain the stability of cassava rhizospheric soil micro-ecology.

8.
Genome Biol ; 22(1): 316, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34784936

ABSTRACT

BACKGROUND: Heterozygous genomes are widespread in outcrossing and clonally propagated crops. However, the variation in heterozygosity underlying key agronomic traits and crop domestication remains largely unknown. Cassava is a staple crop in Africa and other tropical regions and has a highly heterozygous genome. RESULTS: We describe a genomic variation map from 388 resequenced genomes of cassava cultivars and wild accessions. We identify 52 loci for 23 agronomic traits through a genome-wide association study. Eighteen allelic variations in heterozygosity for nine candidate genes are significantly associated with seven key agronomic traits. We detect 81 selective sweeps with decreasing heterozygosity and nucleotide diversity, harboring 548 genes, which are enriched in multiple biological processes including growth, development, hormone metabolisms and responses, and immune-related processes. Artificial selection for decreased heterozygosity has contributed to the domestication of the large starchy storage root of cassava. Selection for homozygous GG allele in MeTIR1 during domestication contributes to increased starch content. Selection of homozygous AA allele in MeAHL17 is associated with increased storage root weight and cassava bacterial blight (CBB) susceptibility. We have verified the positive roles of MeTIR1 in increasing starch content and MeAHL17 in resistance to CBB by transient overexpression and silencing analysis. The allelic combinations in MeTIR1 and MeAHL17 may result in high starch content and resistance to CBB. CONCLUSIONS: This study provides insights into allelic variation in heterozygosity associated with key agronomic traits and cassava domestication. It also offers valuable resources for the improvement of cassava and other highly heterozygous crops.


Subject(s)
Domestication , Genetic Variation , Manihot/genetics , Sequence Analysis, DNA , Chromosome Mapping , Crops, Agricultural/genetics , DNA-Binding Proteins/genetics , Genome, Plant , Genome-Wide Association Study , Nuclear Proteins/genetics , Phenotype , Phylogeny , Plant Proteins/genetics
10.
J Sci Food Agric ; 101(10): 4050-4058, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33349937

ABSTRACT

BACKGROUND: Cassava is rich in nutrition and has high edible value, but the development of the cassava industry is limited by the traditional low added value processing and utilization mode. In this study, cassava tuber was used as beer adjunct to develop a complete set of fermentation technology for manufacturing cassava beer. RESULTS: The activities of transaminase, phenylpyruvate decarboxylase and dehydrogenase in 2-phenylethanol Ehrlich biosynthesis pathway of Saccharomyces cerevisiae were higher in cassava beer than that of malt beer. Aminotransferase ARO9 gene and phenylpyruvate decarboxylase ARO10 gene were up-regulated in the late stage of fermentation, which indicated that they were the main regulated genes of 2-phenylethanol Ehrlich pathway with phenylalanine as substrate in cassava beer preparation. CONCLUSIONS: Compared with traditional wheat beer, cassava beer was similar in the content of nutrition elements, diacetyl, total acid, alcohol and carbon dioxide, but has the characteristics of fresh fragrance and better taste. The hydrocyanic acid contained in cassava root tubes was catabolized during fermentation and compliant with the safety standard of beverage. Further study found that the content of 2-phenylethanol in cassava beer increased significantly, which gave cassava beer a unique elegant and delicate rose flavor. © 2020 Society of Chemical Industry.


Subject(s)
Beer/analysis , Manihot/metabolism , Phenylethyl Alcohol/metabolism , Saccharomyces cerevisiae/metabolism , Beer/microbiology , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Fermentation , Manihot/chemistry , Manihot/microbiology , Phenylethyl Alcohol/analysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transaminases/genetics , Transaminases/metabolism
11.
Breed Sci ; 70(2): 145-166, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32523397

ABSTRACT

In Asia, cassava (Manihot esculenta) is cultivated by more than 8 million farmers, driving the rural economy of many countries. The International Center for Tropical Agriculture (CIAT), in partnership with national agricultural research institutes (NARIs), instigated breeding and agronomic research in Asia, 1983. The breeding program has successfully released high-yielding cultivars resulting in an average yield increase from 13.0 t ha-1 in 1996 to 21.3 t ha-1 in 2016, with significant economic benefits. Following the success in increasing yields, cassava breeding has turned its focus to higher-value traits, such as waxy cassava, to reach new market niches. More recently, building resistance to invasive pests and diseases has become a top priority due to the emergent threat of cassava mosaic disease (CMD). The agronomic research involves driving profitability with advanced technologies focusing on better agronomic management practices thereby maintaining sustainable production systems. Remote sensing technologies are being tested for trait discovery and large-scale field evaluation of cassava. In summary, cassava breeding in Asia is driven by a combination of food and market demand with technological innovations to increase the productivity. Further, exploration in the potential of data-driven agriculture is needed to empower researchers and producers for sustainable advancement.

12.
Front Physiol ; 9: 17, 2018.
Article in English | MEDLINE | ID: mdl-29416511

ABSTRACT

KT/HAK/KUP (KUP) family is responsible for potassium ion (K+) transport, which plays a vital role in the response of plants to abiotic stress by maintaining osmotic balance. However, our understanding of the functions of the KUP family in the drought-resistant crop cassava (Manihot esculenta Crantz) is limited. In the present study, 21 cassava KUP genes (MeKUPs) were identified and classified into four clusters based on phylogenetic relationships, conserved motifs, and gene structure analyses. Transcriptome analysis revealed the expression diversity of cassava KUPs in various tissues of three genotypes. Comparative transcriptome analysis showed that the activation of MeKUP genes by drought was more in roots than that in leaves of Arg7 and W14 genotypes, whereas less in roots than that in leaves of SC124 variety. These findings indicate that different cassava genotypes utilize various drought resistance mechanism mediated by KUP genes. Specific KUP genes showed broad upregulation after exposure to salt, osmotic, cold, H2O2, and abscisic acid (ABA) treatments. Taken together, this study provides insights into the KUP-mediated drought response of cassava at transcription levels and identifies candidate genes that may be utilized in improving crop tolerance to abiotic stress.

13.
Plant Mol Biol Report ; 34(6): 1095-1110, 2016.
Article in English | MEDLINE | ID: mdl-27881899

ABSTRACT

Cassava (Manihot esculenta Crantz) is a tropical root crop and sensitive to low temperature. However, it is poorly to know how cassava can modify its metabolism and growth to adapt to cold stress. An investigation aimed at a better understanding of cold-tolerant mechanism of cassava plantlets was carried out with the approaches of physiology and proteomics in the present study. The principal component analysis of seven physiological characteristics showed that electrolyte leakage (EL), chlorophyll content, and malondialdehyde (MDA) may be the most important physiological indexes for determining cold-resistant abilities of cassava. The genome-wide proteomic analysis showed that 20 differential proteins had the same patterns in the apical expanded leaves of cassava SC8 and Col1046. They were mainly related to photosynthesis, carbon metabolism and energy metabolism, defense, protein synthesis, amino acid metabolism, signal transduction, structure, detoxifying and antioxidant, chaperones, and DNA-binding proteins, in which 40 % were related with photosynthesis. The remarkable variation in photosynthetic activity and expression level of peroxiredoxin is closely linked with expression levels of proteomic profiles. Moreover, analysis of differentially expressed proteins under cold stress is an important step toward further elucidation of mechanisms of cold stress resistance.

14.
Proteome Sci ; 8: 10, 2010 Feb 27.
Article in English | MEDLINE | ID: mdl-20187967

ABSTRACT

BACKGROUND: Proteomics is increasingly becoming an important tool for the study of many different aspects of plant functions, such as investigating the molecular processes underlying in plant physiology, development, differentiation and their interaction with the environments. To investigate the cassava (Manihot esculenta Crantz) proteome, we extracted proteins from somatic embryos, plantlets and tuberous roots of cultivar SC8 and separated them by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). RESULTS: Analysis by liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS) yielded a total of 383 proteins including isoforms, classified into 14 functional groups. The majority of these were carbohydrate and energy metabolism associated proteins (27.2%), followed by those involved in protein biosynthesis (14.4%). Subsequent analysis has revealed that 54, 59, 74 and 102 identified proteins are unique to the somatic embryos, shoots, adventitious roots and tuberous roots, respectively. Some of these proteins may serve as signatures for the physiological and developmental stages of somatic embryos, shoots, adventitious roots and tuberous root. Western blotting results have shown high expression levels of Rubisco in shoots and its absence in the somatic embryos. In addition, high-level expression of alpha-tubulin was found in tuberous roots, and a low-level one in somatic embryos. This extensive study effectively provides a huge data set of dynamic protein-related information to better understand the molecular basis underlying cassava growth, development, and physiological functions. CONCLUSION: This work paves the way towards a comprehensive, system-wide analysis of the cassava. Integration with transcriptomics, metabolomics and other large scale "-omics" data with systems biology approaches can open new avenues towards engineering cassava to enhance yields, improve nutritional value and overcome the problem of post-harvest physiological deterioration.

SELECTION OF CITATIONS
SEARCH DETAIL
...