Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
J Bone Miner Res ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39303104

ABSTRACT

The craniofacial bone, crucial for protecting brain tissue and supporting facial structure, undergoes continuous remodeling through mesenchymal (MSCs) or skeletal stem cells (SSCs) in their niches. Gli1 is an ideal marker for labeling MSCs and osteoprogenitors in this region, and Gli1-lineage cells are identified as pivotal for bone growth, development, repair, and regeneration. Despite its significance, the distribution of Gli1-lineage cells across the dental, oral, and craniofacial (DOC) regions remains to be systematically explored. Utilizing tissue-clearing and light sheet fluorescence microscopy (LSFM) with a Gli1CreER; tdTomatoAi14 mouse model, we mapped the spatial distribution of Gli1-lineage cells throughout the skull, focusing on calvarial bones, sutures, bone marrow, teeth, periodontium, jaw bones, and the temporomandibular joint (TMJ). We found Gli1-lineage cells widespread in these areas, underscoring their significance in DOC regions. Additionally, we observed their role in repairing calvarial bone defects, providing novel insights into craniofacial biology and stem cell niches and enhancing our understanding of stem cells and their progeny's behavior in vivo.


This study investigates the presence and role of a specific stem cell population, known as Gli1-lineage cells, in various parts of the skull and facial bones. Using advanced imaging techniques, we found that these cells are widely distributed across the dental, oral, and craniofacial regions, especially in the cranial sutures, teeth, and jaw. Notably, Gli1-lineage cells migrate to the injury site, which is essential in bone repair and regeneration. These findings enhance our understanding of how stem cells contribute to healing and development in the craniofacial region.

2.
Front Physiol ; 15: 1417719, 2024.
Article in English | MEDLINE | ID: mdl-38989048

ABSTRACT

Introduction: Space is a unique environment characterized by isolation from community life and exposure to circadian misalignment, microgravity, and space radiation. These multiple differences from those experienced on the earth may cause systemic and local tissue stress. Autonomic nerves, including sympathetic and parasympathetic nerves, regulate functions in multiple organs. Saliva is secreted from the salivary gland, which is regulated by autonomic nerves, and plays several important roles in the oral cavity and digestive processes. The balance of the autonomic nervous system in the seromucous glands, such as the submandibular glands, precisely controls serous and mucous saliva. Psychological stress, radiation damage, and other triggers can cause an imbalance in salivary secretion systems. A previous study reported that amylase is a stress marker in behavioral medicine and space flight crews; however, the detailed mechanisms underlying amylase regulation in the space environment are still unknown. Methods: In this study, we aimed to elucidate how lunar gravity (1/6 g) changes mRNA expression patterns in the salivary gland. Using a multiple artificial gravity research system during space flight in the International Space Station, we studied the effects of two different gravitational levels, lunar and Earth gravity, on the submandibular glands of mice. All mice survived, returned to Earth from space, and their submandibular glands were collected 2 days after landing. Results: We found that lunar gravity induced the expression of the salivary amylase gene Amy1; however, no increase in Aqp5 and Ano1, which regulate water secretion, was observed. In addition, genes involved in the exocrine system, such as vesicle-associated membrane protein 8 (Vamp8) and small G proteins, including Rap1 and Rab families, were upregulated under lunar gravity. Conclusion: These results imply that lunar gravity upregulates salivary amylase secretion via Rap/Rab signaling and exocytosis via Vamp8. Our study highlights Amy1 as a potential candidate marker for stress regulation in salivary glands in the lunar gravity environment.

3.
Cureus ; 16(6): e63479, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39077267

ABSTRACT

Introduction Oxidative stress, an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, plays an important role in various dental diseases. Local anesthetics are frequently used in dentistry. The potential antioxidant activity of dental local anesthetics can contribute to dental practice. Therefore, this study aimed to investigate the ROS-scavenging activities of three commonly used dental local anesthetics, lidocaine, prilocaine, and articaine, focusing on their effects on hydroxyl radicals (HO•) and superoxide anions (O2 •-). Materials and methods The electron spin resonance (ESR) spin-trapping technique was employed to specifically measure the ROS-scavenging activities of these local anesthetics at varying concentrations. Results Lidocaine, prilocaine, and articaine exhibited concentration-dependent HO•-scavenging activities, with IC50 values of 0.029%, 0.019%, and 0.014%, respectively. Lidocaine and prilocaine showed concentration-dependent O2 •--scavenging activity, with IC50 values of 0.033% and 0.057%, respectively. However, articaine did not scavenge O2 •-. Conclusions The proactive use of dental local anesthetics may mitigate oxidative injury and inflammatory damage through direct ROS scavenging. However, further research is needed to elucidate the specific mechanisms underlying the antioxidant effects of these dental local anesthetics and their potential impact on the dental diseases associated with oxidative stress.

4.
Inflamm Regen ; 44(1): 6, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38347645

ABSTRACT

BACKGROUND: Severe peripheral nerve damage always requires surgical treatment. Autologous nerve transplantation is a standard treatment, but it is not sufficient due to length limitations and extended surgical time. Even with the available artificial nerves, there is still large room for improvement in their therapeutic effects. Novel treatments for peripheral nerve injury are greatly expected. METHODS: Using a specialized microfluidic device, we generated artificial neurite bundles from human iPSC-derived motor and sensory nerve organoids. We developed a new technology to isolate cell-free neurite bundles from spheroids. Transplantation therapy was carried out for large nerve defects in rat sciatic nerve with novel artificial nerve conduit filled with lineally assembled sets of human neurite bundles. Quantitative comparisons were performed over time to search for the artificial nerve with the therapeutic effect, evaluating the recovery of motor and sensory functions and histological regeneration. In addition, a multidimensional unbiased gene expression profiling was carried out by using next-generation sequencing. RESULT: After transplantation, the neurite bundle-derived artificial nerves exerted significant therapeutic effects, both functionally and histologically. Remarkably, therapeutic efficacy was achieved without immunosuppression, even in xenotransplantation. Transplanted neurite bundles fully dissolved after several weeks, with no tumor formation or cell proliferation, confirming their biosafety. Posttransplant gene expression analysis highlighted the immune system's role in recovery. CONCLUSION: The combination of newly developed microfluidic devices and iPSC technology enables the preparation of artificial nerves from organoid-derived neurite bundles in advance for future treatment of peripheral nerve injury patients. A promising, safe, and effective peripheral nerve treatment is now ready for clinical application.

5.
Article in English | MEDLINE | ID: mdl-38306619

ABSTRACT

Biological aging profoundly impairs the homeostasis of the skeletal system. Cellular senescence, a hallmark of biological aging, plays an instrumental role in bone disease. The underlying mechanisms of cellular senescence, triggered by both intracellular and extracellular stimuli, are multifaceted and yet to be uncovered. Recent research indicates that acute cellular senescence often serves beneficial roles, such as contributing to growth, development, and tissue regeneration. By contrast, chronic cellular senescence, primarily driven by the accumulation of senescent cells (SnCs) and the release of senescence-associated secretory phenotypes (SASP), has detrimental effects on the skeletal system by irreversibly disrupting bone homeostasis and promoting age-related disorders. Furthermore, the bone marrow is rich in immune cells and their exposure to SASP often leads to immune dysfunction, resulting in unresolved chronic inflammation and compromised adaptive immunity. Until now, the impact of SnCs and SASP on the skeleton has remained elusive. Meanwhile, extensive efforts are being made to combat age-related diseases through various strategies. Among them, SnCs and SASP are the primary targets for antiaging therapeutic clearance, resulting in the development of "senolytics" and "senomorphics," respectively. In this review, we summarize and highlight the role of SnCs and SASP in skeletal pathophysiology, the mechanism of cellular senescence in affecting bone metabolism, and potential therapeutic approaches, particularly senolytics and senomorphics, in treating cellular senescence-related bone diseases.


Subject(s)
Cellular Senescence , Senotherapeutics , Cellular Senescence/physiology
6.
Front Biosci (Landmark Ed) ; 28(10): 265, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37919086

ABSTRACT

The oral cavity serves as the initial segment of the digestive system and is responsible for both nutritional supplementation and the mechanical breakdown of food. It comprises distinct hard and soft tissues; the oral mucosa is subject to mechanical stress and interaction with microbiota. In oral cancer, tumors exhibit abnormal cellular networks and aberrant cell-cell interactions arising from complex interplays between environmental and genetic factors. This presents a challenge for clinicians and researchers, impeding the understanding of mechanisms driving oral cancer development and treatment strategies. Lesions with dysplastic features are categorized under oral potentially malignant disorders, including oral leukoplakia, erythroplakia, oral submucous fibrosis, and proliferative verrucous leukoplakia, carrying a high malignancy risk. In this review, we discuss oral cancer cell characteristics and the stiffness of the surrounding matrix. We also discuss the significance of stiffness equilibrium in oral potentially malignant disorders, particularly oral submucous fibrosis, possibly triggered by mechanical stress such as betel quid chewing.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Oral Submucous Fibrosis , Precancerous Conditions , Humans , Oral Submucous Fibrosis/complications , Oral Submucous Fibrosis/pathology , Precancerous Conditions/complications , Precancerous Conditions/pathology , Leukoplakia, Oral/complications , Leukoplakia, Oral/pathology , Mouth Neoplasms/etiology , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/pathology
7.
Biomedicines ; 11(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37760789

ABSTRACT

G protein-coupled receptors in trigeminal ganglion (TG) neurons are often associated with sensory mechanisms, including nociception. We have previously reported the expression of P2Y12 receptors, which are Gi protein-coupled receptors, in TG cells. Activating P2Y12 receptors decreased the intracellular free Ca2+ concentration ([Ca2+]i). This indicated that intracellular adenosine 3',5'-cyclic monophosphate (cAMP) levels can mediate Ca2+ signaling in TG cells. Here, we report more extensive-expression patterns of Gs protein-coupled receptors in primary cultured TG neurons isolated from 7-day-old newborn Wistar rats and further examine the roles of these receptors in cAMP signaling using the BacMam sensor in these neurons. To identify TG neurons, we also measured [Ca2+]i using fura-2 in TG cells and measured intracellular cAMP levels. TG neurons were positive for Gαs protein-coupled receptors, beta-2 adrenergic (ß2), calcitonin gene-related peptide (CGRP), adenosine A2A (A2A), dopamine 1 (D1), prostaglandin I2 (IP), and 5-hydroxytriptamine 4 (5-HT4) receptor. Application of forskolin (FSK), an activator of adenylyl cyclase, transiently increased intracellular cAMP levels in TG neurons. The application of a phosphodiesterase inhibitor augmented the FSK-elicited intracellular cAMP level increase. These increases were significantly suppressed by the application of SQ22536, an adenylyl cyclase inhibitor, in TG neurons. Application of agonists for ß2, CGRP, A2A, D1-like, IP, and 5-HT4 receptors increased intracellular cAMP levels. These increases were SQ22536-sensitive. These results suggested that TG neurons express ß2, CGRP, A2A, D1, IP, and 5-HT4 receptors, and the activations of these Gαs protein-coupled receptors increase intracellular cAMP levels by activating adenylyl cyclase.

8.
Aging Cell ; 22(11): e13980, 2023 11.
Article in English | MEDLINE | ID: mdl-37681346

ABSTRACT

The craniofacial bones provide structural support for the skull and accommodate the vulnerable brain tissue with a protective cavity. The bone tissue undergoes constant turnover, which relies on skeletal stem cells (SSCs) and/or mesenchymal stem cells (MSCs) and their niches. SSCs/MSCs and their perivascular niche within the bone marrow are well characterized in long bones. As for cranial bones, besides bone marrow, the suture mesenchyme has been identified as a unique niche for SSCs/MSCs of craniofacial bones. However, a comprehensive study of the two different cranial stem cell niches at single-cell resolution is still lacking. In addition, during the progression of aging, age-associated changes in cranial stem cell niches and resident cells remain uncovered. In this study, we investigated age-related changes in cranial stem cell niches via single-cell RNA sequencing (scRNA-seq). The transcriptomic profiles and cellular compositions have been delineated, indicating alterations of the cranial bone marrow microenvironment influenced by inflammaging. Moreover, we identified a senescent mesenchymal cell subcluster and several age-related immune cell subclusters by reclustering and pseudotime trajectory analysis, which might be closely linked to inflammaging. Finally, differentially expressed genes (DEGs) and cell-cell communications were analyzed during aging, revealing potential regulatory factors. Overall, this work highlights the age-related changes in cranial stem cell niches, which deepens the current understanding of cranial bone and suture biology and may provide therapeutic targets for antiaging and regenerative medicine.


Subject(s)
Mesenchymal Stem Cells , Stem Cell Niche , Mice , Animals , Stem Cell Niche/genetics , Transcriptome/genetics , Skull , Stem Cells
9.
Biomolecules ; 13(8)2023 07 28.
Article in English | MEDLINE | ID: mdl-37627242

ABSTRACT

Teeth are unique and multifaceted tissues that are necessary for routine functions, such as crushing food and constructing articulated sounds, as well as for esthetic symbols [...].


Subject(s)
Signal Transduction , Tooth
10.
Biomolecules ; 13(6)2023 05 23.
Article in English | MEDLINE | ID: mdl-37371459

ABSTRACT

Odontoblasts are involved in sensory generation as sensory receptor cells and in dentin formation. We previously reported that an increase in intracellular cAMP levels by cannabinoid 1 receptor activation induces Ca2+ influx via transient receptor potential vanilloid subfamily member 1 channels in odontoblasts, indicating that intracellular cAMP/Ca2+ signal coupling is involved in dentinal pain generation and reactionary dentin formation. Here, intracellular cAMP dynamics in cultured human odontoblasts were investigated to understand the detailed expression patterns of the intracellular cAMP signaling pathway activated by the Gs protein-coupled receptor and to clarify its role in cellular functions. The presence of plasma membrane Gαs as well as prostaglandin I2 (IP), 5-hydroxytryptamine 5-HT4 (5-HT4), dopamine D1 (D1), adenosine A2A (A2A), and vasoactive intestinal polypeptide (VIP) receptor immunoreactivity was observed in human odontoblasts. In the presence of extracellular Ca2+, the application of agonists for the IP (beraprost), 5-HT4 (BIMU8), D1 (SKF83959), A2A (PSB0777), and VIP (VIP) receptors increased intracellular cAMP levels. This increase in cAMP levels was inhibited by the application of the adenylyl cyclase (AC) inhibitor SQ22536 and each receptor antagonist, dose-dependently. These results suggested that odontoblasts express Gs protein-coupled IP, 5-HT4, D1, A2A, and VIP receptors. In addition, activation of these receptors increased intracellular cAMP levels by activating AC in odontoblasts.


Subject(s)
Receptors, Vasoactive Intestinal Peptide , Serotonin , Humans , Serotonin/pharmacology , Serotonin/metabolism , Receptors, Vasoactive Intestinal Peptide/metabolism , Odontoblasts , Cell Line , Signal Transduction , Receptors, G-Protein-Coupled/metabolism , Receptors, Cannabinoid/metabolism
12.
Biol Rev Camb Philos Soc ; 98(5): 1749-1767, 2023 10.
Article in English | MEDLINE | ID: mdl-37171117

ABSTRACT

Cranial bones constitute a protective shield for the vulnerable brain tissue, bound together as a rigid entity by unique immovable joints known as sutures. Cranial sutures serve as major growth centres for calvarial morphogenesis and have been identified as a niche for mesenchymal stem cells (MSCs) and/or skeletal stem cells (SSCs) in the craniofacial skeleton. Despite the established dogma of cranial bone and suture biology, technological advancements now allow us to investigate these tissues and structures at unprecedented resolution and embrace multiple novel biological insights. For instance, a decrease or imbalance of representation of SSCs within sutures might underlie craniosynostosis; dural sinuses enable neuroimmune crosstalk and are newly defined as immune hubs; skull bone marrow acts as a myeloid cell reservoir for the meninges and central nervous system (CNS) parenchyma in mediating immune surveillance, etc. In this review, we revisit a growing body of recent studies that explored cranial bone and suture biology using cutting-edge techniques and have expanded our current understanding of this research field, especially from the perspective of development, homeostasis, injury repair, resident MSCs/SSCs, immunosurveillance at the brain's border, and beyond.


Subject(s)
Craniosynostoses , Skull , Humans , Cranial Sutures/metabolism , Craniosynostoses/metabolism , Morphogenesis/physiology , Sutures
13.
Biomolecules ; 12(12)2022 11 24.
Article in English | MEDLINE | ID: mdl-36551174

ABSTRACT

An inflammatory response following dental pulp injury and/or infection often leads to neurogenic inflammation via the axon reflex. However, the detailed mechanism underlying the occurrence of the axon reflex in the dental pulp remains unclear. We sought to examine the intracellular cyclic adenosine monophosphate (cAMP) signaling pathway in odontoblasts via the activation of Gs protein-coupled receptors and intercellular trigeminal ganglion (TG) neuron-odontoblast communication following direct mechanical stimulation of TG neurons. Odontoblasts express heterotrimeric G-protein α-subunit Gαs and calcitonin receptor-like receptors. The application of an adenylyl cyclase (AC) activator and a calcitonin gene-related peptide (CGRP) receptor agonist increased the intracellular cAMP levels ([cAMP]i) in odontoblasts, which were significantly inhibited by the selective CGRP receptor antagonist and AC inhibitor. Mechanical stimulation of the small-sized CGRP-positive but neurofilament heavy chain-negative TG neurons increased [cAMP]i in odontoblasts localized near the stimulated neuron. This increase was inhibited by the CGRP receptor antagonist. In the mineralization assay, CGRP impaired the mineralization ability of the odontoblasts, which was reversed by treatment with a CGRP receptor antagonist and AC inhibitor. CGRP establishes an axon reflex in the dental pulp via intercellular communication between TG neurons and odontoblasts. Overall, CGRP and cAMP signaling negatively regulate dentinogenesis as defensive mechanisms.


Subject(s)
Receptors, Calcitonin Gene-Related Peptide , Trigeminal Ganglion , Receptors, Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Odontoblasts , Calcitonin Gene-Related Peptide Receptor Antagonists/metabolism , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Neurons/metabolism , Signal Transduction , Cyclic AMP/metabolism , Dentin
14.
Stem Cells Transl Med ; 11(4): 356-371, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35485439

ABSTRACT

Aging is a multifaceted and complicated process, manifested by a decline of normal physiological functions across tissues and organs, leading to overt frailty, mortality, and chronic diseases, such as skeletal, cardiovascular, and cognitive disorders, necessitating the development of practical therapeutic approaches. Stem cell aging is one of the leading theories of organismal aging. For decades, mesenchymal stem/stromal cells (MSCs) have been regarded as a viable and ideal source for stem cell-based therapy in anti-aging treatment due to their outstanding clinical characteristics, including easy accessibility, simplicity of isolation, self-renewal and proliferation ability, multilineage differentiation potentials, and immunomodulatory effects. Nonetheless, as evidenced in numerous studies, MSCs undergo functional deterioration and gradually lose stemness with systematic age in vivo or extended culture in vitro, limiting their therapeutic applications. Even though our understanding of the processes behind MSC senescence remains unclear, significant progress has been achieved in elucidating the aspects of the age-related MSC phenotypic changes and possible mechanisms driving MSC senescence. In this review, we aim to summarize the current knowledge of the morphological, biological, and stem-cell marker alterations of aging MSCs, the cellular and molecular mechanisms that underlie MSC senescence, the recent progress made regarding the innovative techniques to rejuvenate senescent MSCs and combat aging, with a particular focus on the interplay between aging MSCs and their niche as well as clinical translational relevance. Also, we provide some promising and novel directions for future research concerning MSC senescence.


Subject(s)
Mesenchymal Stem Cells , Biomarkers , Cell Differentiation , Cellular Senescence/physiology
15.
Biochem Biophys Res Commun ; 603: 49-56, 2022 05 07.
Article in English | MEDLINE | ID: mdl-35278879

ABSTRACT

The stepwise development of bone is rigidly controlled from mesenchymal cells through osteoblasts. Dysregulation of this process causes various bone diseases, such as osteoporosis and osteogenesis imperfecta. Recently, it has been noted that the decrease in bone density due to aging occurs not only in the axial skeleton but also in the facial bone. To address this issue, we focused on neural crest-derived osteoblasts that form craniofacial bone, and evaluated several functional ingredients that have been reported to activate osteoblast function using mineralization ability as an index. Glucosamine is a major component of glycosaminoglycans, is highly expressed in connective and cartilage tissues, and is known as a health food that improves joint function. Recent studies suggest that glucosamine promotes osteoblast activation; however, the underlying mechanism of this phenomenon remains unclear. This study is the first to elucidate the effects of glucosamine on neural crest-derived osteoblast differentiation using human induced pluripotent stem cells. We confirmed that glucosamine promotes osteogenesis of neural crest-derived mesenchymal stromal cells and osteoblasts. Furthermore, glucosamine increased the gene expression as well as the protein levels of osteopontin (OPN) and screlostin (SOST) which are involved in the following two processes: (1) conversion of mesenchymal stromal cells into osteoblasts, and (2) maturation of osteoblasts. These findings suggest that glucosamine plays a role in promoting osteogenesis and contributes to maintaining a healthy bone condition.


Subject(s)
Induced Pluripotent Stem Cells , Osteogenesis , Cell Differentiation , Cells, Cultured , Glucosamine/metabolism , Glucosamine/pharmacology , Glycosaminoglycans/metabolism , Humans , Neural Crest , Osteoblasts/metabolism
17.
Front Physiol ; 13: 891759, 2022.
Article in English | MEDLINE | ID: mdl-36589456

ABSTRACT

According to the "hydrodynamic theory," dentinal pain or sensitivity is caused by dentinal fluid movement following the application of various stimuli to the dentin surface. Recent convergent evidence in Vitro has shown that plasma membrane deformation, mimicking dentinal fluid movement, activates mechanosensitive transient receptor potential (TRP)/Piezo channels in odontoblasts, with the Ca2+ signal eliciting the release of ATP from pannexin-1 (PANX-1). The released ATP activates the P2X3 receptor, which generates and propagates action potentials in the intradental Aδ afferent neurons. Thus, odontoblasts act as sensory receptor cells, and odontoblast-neuron signal communication established by the TRP/Piezo channel-PANX-1-P2X3 receptor complex may describe the mechanism of the sensory transduction sequence for dentinal sensitivity. To determine whether odontoblast-neuron communication and odontoblasts acting as sensory receptors are essential for generating dentinal pain, we evaluated nociceptive scores by analyzing behaviors evoked by dentinal sensitivity in conscious Wistar rats and Cre-mediated transgenic mouse models. In the dentin-exposed group, treatment with a bonding agent on the dentin surface, as well as systemic administration of A-317491 (P2X3 receptor antagonist), mefloquine and 10PANX (non-selective and selective PANX-1 antagonists), GsMTx-4 (selective Piezo1 channel antagonist), and HC-030031 (selective TRPA1 channel antagonist), but not HC-070 (selective TRPC5 channel antagonist), significantly reduced nociceptive scores following cold water (0.1 ml) stimulation of the exposed dentin surface of the incisors compared to the scores of rats without local or systemic treatment. When we applied cold water stimulation to the exposed dentin surface of the lower first molar, nociceptive scores in the rats with systemic administration of A-317491, 10PANX, and GsMTx-4 were significantly reduced compared to those in the rats without systemic treatment. Dentin-exposed mice, with somatic odontoblast-specific depletion, also showed significant reduction in the nociceptive scores compared to those of Cre-mediated transgenic mice, which did not show any type of cell deletion, including odontoblasts. In the odontoblast-eliminated mice, P2X3 receptor-positive A-neurons were morphologically intact. These results indicate that neurotransmission between odontoblasts and neurons mediated by the Piezo1/TRPA1-pannexin-1-P2X3 receptor axis is necessary for the development of dentinal pain. In addition, odontoblasts are necessary for sensory transduction to generate dentinal sensitivity as mechanosensory receptor cells.

18.
Biomolecules ; 11(11)2021 11 06.
Article in English | MEDLINE | ID: mdl-34827642

ABSTRACT

Dental and oral tissues maintain homeostasis through potential reparative or regenerative processes [...].


Subject(s)
Bone and Bones , Regenerative Medicine , Tissue Engineering , Wound Healing
19.
Bull Tokyo Dent Coll ; 62(4): 253-260, 2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34776477

ABSTRACT

When pain adversely affects a patient's activities its diagnosis needs to be fast and accurate to allow effective treatment to be commenced as soon as possible. Difficulties may be found in achieving this, however, in elderly patients with age-associated cognitive decline, as they may not be capable of properly understanding or recalling their symptoms. The present case concerns a 77-year-old woman who presented with the chief complaint of pain in the right mandible persisting throughout the day, and severe enough to necessitate her lying down in bed all day long. The use of open-ended questions followed by a structured interview focused on pain with closed-ended questions revealed that she experienced paroxysms of pain throughout the day and that she was afraid of its occurrence. Based on these findings, the diagnosis was trigeminal neuralgia. Carbamazepine decreased the pain with no side effects. The patient continued taking carbamazepine for 3 months, during which time she was closely monitored for adverse reactions. No side effects, such as drowsiness or dizziness, were observed, however, and the pain subsided completely with no recurrence, even after cessation of carbamazepine.


Subject(s)
Trigeminal Neuralgia , Aged , Carbamazepine/therapeutic use , Female , Humans , Treatment Outcome , Trigeminal Neuralgia/diagnosis , Trigeminal Neuralgia/drug therapy
20.
Front Physiol ; 12: 704518, 2021.
Article in English | MEDLINE | ID: mdl-34504437

ABSTRACT

Odontoblasts play critical roles in dentin formation and sensory transduction following stimuli on the dentin surface. Exogenous stimuli to the dentin surface elicit dentinal sensitivity through the movement of fluids in dentinal tubules, resulting in cellular deformation. Recently, Piezo1 channels have been implicated in mechanosensitive processes, as well as Ca2+ signals in odontoblasts. However, in human odontoblasts, the cellular responses induced by mechanical stimulation, Piezo1 channel expression, and its pharmacological properties remain unclear. In the present study, we examined functional expression of the Piezo1 channel by recording direct mechanical stimulation-induced Ca2+ signaling in dentin matrix protein 1 (DMP-1)-, nestin-, and dentin sialophosphoprotein (DSPP)-immunopositive human odontoblasts. Mechanical stimulation of human odontoblasts transiently increased intracellular free calcium concentration ([Ca2+]i). Application of repeated mechanical stimulation to human odontoblasts resulted in repeated transient [Ca2+]i increases, but did not show any desensitizing effects on [Ca2+]i increases. We also observed a transient [Ca2+]i increase in the neighboring odontoblasts to the stimulated cells during mechanical stimulation, showing a decrease in [Ca2+]i with an increasing distance from the mechanically stimulated cells. Application of Yoda1 transiently increased [Ca2+]i. This increase was inhibited by application of Gd3+ and Dooku1, respectively. Mechanical stimulation-induced [Ca2+]i increase was also inhibited by application of Gd3+ or Dooku1. When Piezo1 channels in human odontoblasts were knocked down by gene silencing with short hairpin RNA (shRNA), mechanical stimulation-induced [Ca2+]i responses were almost completely abolished. Piezo1 channel knockdown attenuated the number of Piezo1-immunopositive cells in the immunofluorescence analysis, while no effects were observed in Piezo2-immunopositive cells. Alizarin red staining distinctly showed that pharmacological activation of Piezo1 channels by Yoda1 significantly suppressed mineralization, and shRNA-mediated knockdown of Piezo1 also significantly enhanced mineralization. These results suggest that mechanical stimulation predominantly activates intracellular Ca2+ signaling via Piezo1 channel opening, rather than Piezo2 channels, and the Ca2+ signal establishes intercellular odontoblast-odontoblast communication. In addition, Piezo1 channel activation participates in the reduction of dentinogenesis. Thus, the intracellular Ca2+ signaling pathway mediated by Piezo1 channels could contribute to cellular function in human odontoblasts in two ways: (1) generating dentinal sensitivity and (2) suppressing physiological/reactional dentinogenesis, following cellular deformation induced by hydrodynamic forces inside dentinal tubules.

SELECTION OF CITATIONS
SEARCH DETAIL