Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Acta Physiol (Oxf) ; 240(5): e14133, 2024 May.
Article in English | MEDLINE | ID: mdl-38546340

ABSTRACT

AIM: Perinatal hypercholesterolemia exacerbates the development of atherosclerotic plaques in adult offspring. Here, we aimed to study the effect of maternal treatment with cholestyramine, a lipid-lowering drug, on atherosclerosis development in adult offspring of hypercholesterolemic ApoE-deficient (ApoE-/-) mice. METHODS: ApoE-/- mice were treated with 3% cholestyramine (CTY) during gestation (G). After weaning, offspring (CTY-G) were fed control diet until sacrificed at 25weeks of age. Atherosclerosis development in the aortic root of offspring was assessed after oil-red-o staining, along with some of predefined atherosclerosis regulators such as LDL and HDL by high-performance liquid chromatography (HPLC), and bile acids (BA) and trimethylamine N-oxide (TMAO) by liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS: In pregnant dams, cholestyramine treatment resulted in significantly lower plasma total- and LDL-cholesterol as well as gallbladder total BA levels. In offspring, both males and females born to treated dams displayed reduced atherosclerotic plaques areas along with less lipid deposition in the aortic root. No significant change in plasma total cholesterol or triglycerides was measured in offspring, but CTY-G males had increased HDL-cholesterol and decreased apolipoproteins B100 to A-I ratio. This latter group also showed reduced gallbladder total and specifically tauro-conjugated bile acid pools, whereas for CTY-G females, hydrophilic plasma tauro-conjugated BA pool was significantly higher. They also benefited from lower plasma TMAO. CONCLUSION: Prenatal cholestyramine treatment reduces atherosclerosis development in adult offspring of ApoE-/- mice along with modulating the plaques' composition as well as some related biomarkers such as HDL-C, bile acids and TMAO.

2.
Pediatr Res ; 93(4): 938-947, 2023 03.
Article in English | MEDLINE | ID: mdl-35739258

ABSTRACT

BACKGROUND: Preterm birth is associated with higher risks of suboptimal neurodevelopment and cardiometabolic disease later in life. Altered maternal-fetal lipid supply could play a role in such risks. Our hypothesis was that very preterm infants born with very low birth weight (VLBW) have altered lipidome and apolipoprotein profiles, compared with term infants. METHODS: Seven mothers of VLBW infants born at <32 GA and 8 full-term mother-infant dyads were included. Cholesterol and triglycerides in lipoproteins were determined in maternal plasma and in the two blood vessels of the umbilical cord (vein (UV) and artery (UA)) following FPLC isolation. Apolipoprotein concentrations in lipoproteins and plasma lipidomic analysis were performed by LC-MS/MS. RESULTS: We found higher cholesterol and VLDL-cholesterol in UV and UA and lower apolipoprotein A-I in HDL2 in UV in preterm neonates. Phosphatidylcholine (PC) containing saturated and monounsaturated fatty acids and specific sphingomyelin species were increased in UV and UA, whereas PC containing docosahexaenoic acid (DHA) was reduced in UV of VLBW neonates. CONCLUSIONS: Lower DHA-PC suggests a lower DHA bioavailability and may contribute to the impaired neurodevelopment. Altered HDL-2, VLDL, and sphingomyelin profile reflect an atherogenic risk and increased metabolic risk at adulthood in infants born prematurely. IMPACT: Lower ApoA-I in HDL2, and increased specific sphingomyelin and phosphatidylcholine containing saturated and monounsaturated fatty acid could explain the accumulation of cholesterol in umbilical vein in VLBW preterm neonates. Decreased phosphatidylcholine containing DHA suggest a reduced DHA availability for brain development in VLBW preterm infants. Characterization of alterations in fetal lipid plasma and lipoprotein profiles may help to explain at least in part the causes of the elevated cardiovascular risk known in people born prematurely and may suggest that a targeted nutritional strategy based on the composition of fatty acids carried by phosphatidylcholine may be promising in infants born very early.


Subject(s)
Infant, Premature, Diseases , Premature Birth , Infant , Female , Humans , Infant, Newborn , Adult , Infant, Premature , Pilot Projects , Lipidomics , Sphingomyelins , Chromatography, Liquid , Tandem Mass Spectrometry , Lipoproteins , Infant, Very Low Birth Weight , Docosahexaenoic Acids , Cholesterol , Fetal Growth Retardation , Phosphatidylcholines
3.
Arch Physiol Biochem ; 129(3): 618-625, 2023 Jun.
Article in English | MEDLINE | ID: mdl-33320714

ABSTRACT

CONTEXT: Thymus atlanticus has been reported to have significant hypolipidaemic effect in animal models. However, the mechanism of this hypolipidaemic action still unknown. OBJECTIVE: To determinate the possible mechanism(s) of hypolipidaemic action of a Thymus atlanticus polyphenol-rich extract (PRE). MATERIALS AND METHODS: Plasma, faecal, and liver cholesterol, bile acid content in the faeces, and gene expression level of HMG-CoA reductase, CYP7A1, ABCG5 and ABCG8 were analysed after 9 weeks in hamsters feeding normal diet, high-fat diet (HFD) or HFD supplemented with 400 mg/kg body weight/day of PRE. RESULTS: PRE significantly decreased total cholesterol content (p < .05) and HMG-CoA reductase expression (p < .05), but did not affect the faecal cholesterol, bile acid contents and CYP7A1 and ABCG5/G8 expression (p > .05). CONCLUSION: We can conclude that the T. atlanticus extract is efficient in the alleviation of chronic hyperlipidaemia by acting as cholesterol biosynthesis inhibitor.


Subject(s)
Anticholesteremic Agents , Diet, High-Fat , Cricetinae , Animals , Diet, High-Fat/adverse effects , Polyphenols/pharmacology , Polyphenols/metabolism , Cholesterol , Lipid Metabolism , Liver/metabolism , Anticholesteremic Agents/pharmacology , Bile Acids and Salts/metabolism , Bile Acids and Salts/pharmacology
4.
Nat Commun ; 13(1): 5399, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104342

ABSTRACT

Cancer and cardiovascular disease (CVD) share common risk factors such as dyslipidemia, obesity and inflammation. However, the role of pro-atherogenic environment and its associated low-grade inflammation in tumor progression remains underexplored. Here we show that feeding C57BL/6J mice with a non-obesogenic high fat high cholesterol diet (HFHCD) for two weeks to induce mild dyslipidemia, increases the pool of circulating Ly6Chi monocytes available for initial melanoma development, in an IL-1ß-dependent manner. Descendants of circulating myeloid cells, which accumulate in the tumor microenvironment of mice under HFHCD, heighten pro-angiogenic and immunosuppressive activities locally. Limiting myeloid cell accumulation or targeting VEGF-A production by myeloid cells decrease HFHCD-induced tumor growth acceleration. Reverting the HFHCD to a chow diet at the time of tumor implantation protects against tumor growth. Together, these data shed light on cross-disease communication between cardiovascular pathologies and cancer.


Subject(s)
Dyslipidemias , Monocytes , Animals , Carcinogenesis/pathology , Cell Transformation, Neoplastic/pathology , Dyslipidemias/pathology , Inflammation/pathology , Mice , Mice, Inbred C57BL , Monocytes/pathology , Myeloid Cells/pathology , Tumor Microenvironment
5.
Mar Drugs ; 20(7)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35877734

ABSTRACT

Lipid peroxidation is associated with the development of some pathologies, such as cardiovascular diseases. Reduction in oxidative stress by antioxidants, such as Arthrospira (formely Spirulina), helps improving this redox imbalance. The aim of the study was to evaluate the effect of the Arthrospira liquid extract "Spirulysat®" on oxidative markers-in particular, oxidized LDL (oxLDL)/total LDL cholesterol-and isoprostanes and to investigate its impact on lipid and glucose metabolism in the metabolic syndrome subject. A controlled, randomised, double-blind design was conducted in 40 subjects aged 18 to 65 years with metabolic syndrome after a daily intake of Spirulysat® or placebo for twelve weeks. Blood and urinary samples were collected at three visits (V1, V2, V3) in the two groups for parameters determination. Although the Spirulysat® group showed a decrease at all visits of the oxLDL/total cholesterol ratio, there was no significant difference compared to the placebo (p = 0.36). The urinary isoprostanes concentration in the Spirulysat® group was reduced (p = 0.014) at V3. Plasma triglycerides decreased at V3 (p = 0.003) and HDL-cholesterol increased (p = 0.031) at all visits with Spirulysat®. In conclusion, Spirulysat® did not change the oxidized LDL (oxLDL)/LDL ratio but decreased the urinary isoprostanes, plasma triglycerides and increased HDL cholesterol, suggesting a beneficial effect on metabolic syndrome.


Subject(s)
Metabolic Syndrome , Spirulina , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cholesterol , Cholesterol, HDL , Double-Blind Method , Humans , Isoprostanes/pharmacology , Isoprostanes/therapeutic use , Lipoproteins, LDL , Metabolic Syndrome/drug therapy , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Triglycerides
6.
Molecules ; 27(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35807489

ABSTRACT

Long-chain polyunsaturated fatty acids n-3 series (n-3 LC-PUFAs), especially eicosapentaenoic and docosahexaenoic acids, are known to exert preventive effects on obesity and metabolic syndrome. Mainly consumed in the form of fish oil, LC-PUFAs n-3 are also found in significant quantities in other sources such as certain microalgae. The aim of this study was to evaluate the effects of Diacronema lutheri (Dia), a microalga rich in n-3 LC-PUFAs, on metabolic disorders associated with obesity. Three groups of male Wistar rats (n = 6 per group) were submitted for eight weeks to a standard diet or high-fat and high-fructose diet (HF), supplemented or not with 12% of Dia (HF-Dia). Compared to HF rats, HF-Dia rats showed a 41% decrease in plasma triacylglycerol (TAG) and an increase in plasma cholesterol (+35%) as well as in high-density lipoprotein cholesterol (+51%) without change to low-density lipoprotein cholesterol levels. Although fasting glycemia did not change, glucose and insulin tolerance tests highlighted an improvement in glucose and insulin homeostasis. Dia supplementation restored body weight and fat mass, and decreased levels of liver TAG (-75%) and cholesterol (-84%). In HF-Dia rats, leptin was decreased (-30%) below the control level corresponding to a reduction of 68% compared to HF rats. Similarly, the anti-inflammatory cytokines interleukin-4 (IL-4) and IL-10 were restored up to control levels, corresponding to a 74% and 58% increase in HF rats, respectively. In contrast, the level of IL-6 remained similar in the HF and HF-Dia groups and about twice that of the control. In conclusion, these results indicated that the D. lutheri microalga may be beneficial for the prevention of weight gain and improvement in lipid and glucose homeostasis.


Subject(s)
Fatty Acids, Omega-3 , Metabolic Syndrome , Microalgae , Animals , Diet, High-Fat/adverse effects , Fatty Acids , Fatty Acids, Omega-3/pharmacology , Fructose , Glucose , Insulin , Male , Metabolic Syndrome/complications , Metabolic Syndrome/prevention & control , Obesity/metabolism , Rats , Rats, Wistar , Triglycerides
7.
J Food Biochem ; 46(9): e14225, 2022 09.
Article in English | MEDLINE | ID: mdl-35575425

ABSTRACT

Thymus atlanticus has been used by Moroccan people to treat a variety of health problems, particularly metabolic disorders. In this study, hamsters fed a high-fat diet daily received distilled water (a positive control) or a single dose of Thymus atlanticus polyphenols (Pp) for 63 days. The negative control was fed a normal diet and received distilled water. Results showed that the supplementation of HFD with Pp significantly (p < .001) reduced the levels of MDA and LDL cholesterol, restored insulin level, and increased the activities of serum paraoxonase-1 and HDL cholesterol levels, but did not affect (p > .05) the activity of superoxide dismutase and glutathione peroxidase when compared with the group feeding HFD alone. Thymus atlanticus could be an effective agent against dyslipidemia, oxidative stress, and insulin resistance. PRACTICAL APPLICATIONS: HFD consumption is a risk factor for oxidative stress and the development of metabolic disorders, such as hyperlipidemia and insulin resistance, which may result in atherosclerosis and related cardiovascular diseases, the leading causes of death globally. The management of these alterations is an important strategy to prevent and treat heart complications. Our results showed thatT. atlanticus effectively alleviated HFD-induced hyperlipidemia and insulin resistance and improved PON1 activity. T. atlanticus is a source of biomolecules that may be an effective supplement for controlling HFD-related metabolic disorders. Therefore, the findings of this study may be helpful in the preparation of effective supplements from T. atlanticus to control metabolic disorders and related complications.


Subject(s)
Aryldialkylphosphatase , Hyperlipidemias , Insulin Resistance , Plant Extracts , Polyphenols , Animals , Aryldialkylphosphatase/metabolism , Cricetinae , Diet, High-Fat/adverse effects , Dietary Supplements , Hyperlipidemias/metabolism , Lipids , Liver , Plant Extracts/pharmacology , Polyphenols/pharmacology , Thymus Plant/chemistry
8.
Arterioscler Thromb Vasc Biol ; 41(12): e512-e523, 2021 12.
Article in English | MEDLINE | ID: mdl-34706557

ABSTRACT

OBJECTIVE: Gestational hypercholesterolemia concomitantly with a highly oxidative environment is associated with higher atherosclerosis in human and animal offspring. This work aimed to determine whether perinatal administration of a C-phycocyanin concentrate, a powerful antioxidant, can protect against atherosclerosis development in genetically hypercholesterolemic mice in adult life. Approach and Results: C-Phycocyanin was administered during gestation solely or gestation and lactation to apolipoprotein E-deficient mice. Male and female offspring were studied until 25 weeks old. Progenies born to supplemented mothers displayed significantly less atherosclerotic root lesions than control group in all groups excepted in male supplemented during gestation and lactation. Female born to supplemented mothers had a greater gallbladder total bile acid pool, lower secondary hydrophobic bile acid levels such as lithocholic acid, associated with less plasma trimethylamine N-oxide at 16 weeks old compared with control mice. Regarding male born to C-Phycocyanin administrated mothers, they expressed a higher high-density lipoprotein cholesterol level, more soluble bile acids such as ß-muricholic acids, and a decreased plasma trimethylamine at 16 weeks old. Liver reduced-to-oxidized glutathione ratio were increased and liver gene expression of superoxide dismutase and glutathione peroxidase were significantly decreased in male born to gestational supplemented mothers. No difference in the composition of cecal microbiota was found between groups, regardless of sex. CONCLUSIONS: Our findings suggest a protective effect of perinatal antioxidant administration on atherosclerosis development in apolipoprotein E-deficient mice involving sex-specific mechanisms.


Subject(s)
Atherosclerosis/prevention & control , Cholesterol/metabolism , Methylamines/metabolism , Phycocyanin/administration & dosage , Animals , Apolipoproteins E/deficiency , Atherosclerosis/metabolism , Atherosclerosis/pathology , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
9.
Nutrients ; 13(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34578953

ABSTRACT

Maternal supplementation during pregnancy with docosahexaenoic acid (DHA) is internationally recommended to avoid postpartum maternal depression in the mother and improve cognitive and neurological outcomes in the offspring. This study was aimed at determining whether this nutritional intervention, in the rat, protects the offspring against the development of obesity and its associated metabolic disorders. Pregnant Wistar rats received an extract of fish oil enriched in DHA or saline (SAL) as placebo by mouth from the beginning of gestation to the end of lactation. At weaning, pups were fed standard chow or a free-choice, high-fat, high-sugar (fc-HFHS) diet. Compared to animals fed standard chow, rats exposed to the fc-HFHS diet exhibited increased body weight, liver weight, body fat and leptin in serum independently of saline or DHA maternal supplementation. Nevertheless, maternal DHA supplementation prevented both the glucose intolerance and the rise in serum insulin resulting from consumption of the fc-HFHS diet. In addition, animals from the DHA-fc-HFHS diet group showed decreased hepatic triglyceride accumulation compared to SAL-fc-HFHS rats. The beneficial effects on glucose homeostasis declined with age in male rats. Yet, the preventive action against hepatic steatosis was still present in 6-month-old animals of both sexes and was associated with decreased hepatic expression of lipogenic genes. The results of the present work show that maternal DHA supplementation during pregnancy programs a healthy phenotype into the offspring that was protective against the deleterious effects of an obesogenic diet.


Subject(s)
Animal Nutritional Physiological Phenomena/drug effects , Diet, High-Fat/adverse effects , Docosahexaenoic Acids/pharmacology , Fatty Liver/prevention & control , Lactation , Animals , Diet, High-Fat/methods , Dietary Supplements , Disease Models, Animal , Docosahexaenoic Acids/administration & dosage , Fatty Liver/etiology , Female , Maternal Nutritional Physiological Phenomena/drug effects , Pregnancy , Rats , Rats, Wistar
10.
Oxid Med Cell Longev ; 2021: 9986299, 2021.
Article in English | MEDLINE | ID: mdl-34257827

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a dysmetabolic hepatic damage of increasing severity: simple fat accumulation (steatosis), nonalcoholic steatohepatitis (NASH), and hepatic fibrosis. Oxidative stress is considered an important factor in producing hepatocyte injury associated with NAFLD progression. Studies also suggest a link between the accumulation of specific hepatic lipid species, mitochondrial dysfunction, and the progression of NAFLD. However, it is unclear whether mitochondrial lipid modifications are involved in NAFLD progression. To gain insight into the relationship between mitochondrial lipids and disease progression through different stages of NAFLD, we performed lipidomic analyses on mouse livers at different stages of western diet-induced NAFLD, with or without hepatic fibrosis. After organelle separation, we studied separately the mitochondrial and the "nonmitochondrial" hepatic lipidomes. We identified 719 lipid species from 16 lipid families. Remarkably, the western diet triggered time-dependent changes in the mitochondrial lipidome, whereas the "nonmitochondrial" lipidome showed little difference with levels of hepatic steatosis or the presence of fibrosis. In mitochondria, the changes in the lipidome preceded hepatic fibrosis. In particular, two critical phospholipids, phosphatidic acid (PA) and cardiolipin (CL), displayed opposite responses in mitochondria. Decrease in CL and increase in PA were concurrent with an increase of coenzyme Q. Electron paramagnetic resonance spectroscopy superoxide spin trapping and Cu2+ measurement showed the progressive increase in oxidative stress in the liver. Overall, these results suggest mitochondrial lipid modifications could act as an early event in mitochondrial dysfunction and NAFLD progression.


Subject(s)
Lipid Metabolism/genetics , Mitochondria/pathology , Non-alcoholic Fatty Liver Disease/genetics , Oxidative Stress/genetics , Animals , Humans , Male , Mice , Non-alcoholic Fatty Liver Disease/pathology
11.
Cells ; 10(6)2021 05 31.
Article in English | MEDLINE | ID: mdl-34072832

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is highly prevalent in Western countries and has become a serious public health concern. Although Western-style dietary patterns, characterized by a high intake of saturated fat, is considered a risk factor for NAFLD, the molecular mechanisms leading to hepatic fat accumulation are still unclear. In this study, we assessed epigenetic regulation of peroxisome proliferator-activated receptor γ (PPARγ), modifications of gene expression, and lipid uptake in the liver of mice fed a high-fat diet (HFD), and in hepatocyte culture challenged with palmitic acid. Bisulfate pyrosequencing revealed that HFD reduced the level of cytosine methylation in the pparγ DNA promoter. This was associated with increased expression of the hepatic PPARγ, very low-density lipoprotein receptor (VLDLR) and cluster differentiating 36 (CD36), and enhanced uptake of fatty acids and very low-density lipoprotein, leading to excess hepatic lipid accumulation. Furthermore, palmitic acid overload engendered comparable modifications in hepatocytes, suggesting that dietary fatty acids contribute to the pathogenesis of NAFLD through epigenetic upregulation of PPARγ and its target genes. The significance of epigenetic regulation was further demonstrated in hepatocytes treated with DNA methylation inhibitor, showing marked upregulation of PPARγ and its target genes, leading to enhanced fatty acid uptake and storage. This study demonstrated that HFD-induction of pparγ DNA promoter demethylation increased the expression of PPARγ and its target genes, vldlr and cd36, leading to excess lipid accumulation, an important initiating mechanism by which HFD increased PPARγ and lipid accumulation. These findings provide strong evidence that modification of the pparγ promoter methylation is a crucial mechanism of regulation in NAFLD pathogenesis.


Subject(s)
Epigenesis, Genetic/physiology , Hepatocytes/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , PPAR gamma/metabolism , Animals , CD36 Antigens/genetics , Diet, High-Fat/methods , Disease Models, Animal , Lipid Metabolism/physiology , Liver/metabolism , Mice, Inbred C57BL
12.
Eur J Nutr ; 60(8): 4483-4494, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34110469

ABSTRACT

PURPOSE: Metabolic syndrome is characterized by hyperglycemia, hyperlipemia and exacerbated oxidative stress. The aim of the study was to determine whether Spirulysat®, a Spirulina liquid extract (SLE) enriched in phycocyanin, would prevent metabolic abnormalities induced by high-fat diet. METHODS: The effect of acute SLE supplementation on postprandial lipemia and on triton-induced hyperlipidemia was studied in hamster fed control diet (C). The effect of chronic SLE supplementation on lipid content in plasma, liver and aorta, and on glycemia and oxidative stress was studied in hamster fed control (C) or high-fat diet (HF) for two weeks and then treated with SLE for two weeks (CSp and HFSp) or not (C and HF). RESULTS: The acute SLE supplementation lowered plasma cholesterol and non-esterified fatty acid concentrations after olive oil gavage (P < 0.05) in CSp, while no effect was observed on triglyceridemia. HFD increased plasma MDA, basal glycemia, triglyceridemia, total plasma cholesterol, VLDL, LDL and HDL cholesterol, ceramide, sphingomyelin and glucosylceramide content in liver in HF compared to C (P < 0.05). SLE did not affect SOD and GPx activities nor total antioxidant status in HFSp group but lowered glycemia, glucoceramide and cholesterol in liver and cholesterol in aorta compared to HF (P < 0.05). SLE also decreased HMGCoA and TGF-ß1 gene expression in liver (P < 0.05) and tended to lower G6Pase (P = 0.068) gene expression in HFSp compared to HF. CONCLUSION: Although 2-week SLE supplementation did not affect oxidative stress, it protected from hyperglycemia and lipid accumulation in liver and aorta suggesting a protective effect against metabolic syndrome.


Subject(s)
Diet, High-Fat , Spirulina , Animals , Cricetinae , Diet, High-Fat/adverse effects , Liver , Plant Extracts/pharmacology , Sphingolipids
13.
Nutrients ; 13(4)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918417

ABSTRACT

Epidemiological studies have shown that carrot consumption may be associated with a lower risk of developing several metabolic dysfunctions. Our group previously determined that the Bolero (Bo) carrot variety exhibited vascular and hepatic tropism using cellular models of cardiometabolic diseases. The present study evaluated the potential metabolic and cardiovascular protective effect of Bo, grown under two conditions (standard and biotic stress conditions (BoBS)), in apolipoprotein E-knockout (ApoE-/-) mice fed with high fat diet (HFD). Effects on metabolic/hemodynamic parameters and on atherosclerotic lesions have been assessed. Both Bo and BoBS decreased plasma triglyceride and expression levels of genes implicated in hepatic de novo lipogenesis and lipid oxidation. BoBS supplementation decreased body weight gain, secretion of very-low-density lipoprotein, and increased cecal propionate content. Interestingly, Bo and BoBS supplementation improved hemodynamic parameters by decreasing systolic, diastolic, and mean blood pressure. Moreover, Bo improved cardiac output. Finally, Bo and BoBS substantially reduced the aortic root lesion area. These results showed that Bo and BoBS enriched diets corrected most of the metabolic and cardiovascular disorders in an atherosclerosis-prone genetic mouse model and may therefore represent an interesting nutritional approach for the prevention of cardiovascular diseases.


Subject(s)
Blood Pressure/physiology , Cardiovascular Diseases/prevention & control , Daucus carota , Dietary Supplements , Plaque, Atherosclerotic/therapy , Animals , Aorta/pathology , Apolipoproteins E/deficiency , Cardiac Output , Cardiometabolic Risk Factors , Cardiovascular Diseases/genetics , Cecum/metabolism , Diet, High-Fat , Disease Models, Animal , Lipid Peroxidation , Lipogenesis , Lipoproteins, VLDL/blood , Mice , Mice, Knockout , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology , Propionates/metabolism , Triglycerides/blood , Weight Gain
14.
Nutrients ; 13(2)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525643

ABSTRACT

Long-chain polyunsaturated fatty acids n-3 series and especially docosahexaenoic acid are known to exert preventive effects on metabolic disturbances associated with obesity and decrease cardiovascular disease risk. n-3 LC-PUFAs are mainly consumed in the form of fish oil, while other sources, such as certain microalgae, may contain a high content of these fatty acids. The aim of this study was to evaluate the effects of Tisochrysis lutea (Tiso), a microalga rich in DHA, on metabolic disorders associated with obesity. Three male Wistar rat groups were submitted for eight weeks to a standard diet or high-fat and high fructose diet (HF), supplemented or not with 12% of T. lutea (HF-Tiso). The supplementation did not affect plasma alanine aminotransferase (ALAT). Bodyweight, glycemia and insulinemia decreased in HF-Tiso rats (ANOVA, p < 0.001), while total plasma cholesterol, high-density lipoprotein-cholesterol (HDL-C) increased (ANOVA, p < 0.001) without change of low-density lipoprotein-cholesterol (LDL-C) and triacylglycerol (TAG) levels. Tiso supplementation decreased fat mass and leptinemia as well as liver TAG, cholesterol and plasma tumor necrosis factor-alpha levels (ANOVA, p < 0.001) while it did not affect interleukin 6 (IL-6), IL-4 and lipopolysaccharides levels. HF-Tiso rats showed an increase of IL-10 level in abdominal adipose tissue (ANOVA, p < 0.001). In conclusion, these results indicated that DHA-rich T. lutea might be beneficial for the prevention of obesity and improvement of lipid and glucose metabolism.


Subject(s)
Aquatic Organisms/chemistry , Metabolic Syndrome/prevention & control , Microalgae/chemistry , Obesity/prevention & control , Adiposity , Animals , Body Weight , Cytokines/blood , Diet, High-Fat , Dietary Supplements , Drinking Behavior , Energy Intake , Feeding Behavior , Inflammation Mediators/blood , Insulin Resistance , Lipids/blood , Lipopolysaccharides/blood , Liver/metabolism , Male , Metabolic Syndrome/blood , Obesity/blood , Rats, Wistar
15.
Biomedicines ; 8(11)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198144

ABSTRACT

Epidemiological studies describe the association between apple consumption and improved cardiovascular and metabolic dysfunction. Our recent multiparametric screening on cellular model studies has shown that apples exhibit vascular tropism including Granny Smith (GS) variety independently of the storage condition. The present study aimed to evaluate the cardiovascular and metabolic protection of supplementation of GS variety after storage in classic cold (GSCC) and extreme ultra-low oxygen conditions (GSXO) in the apolipoprotein E-deficient 8-week-old mice fed with high fat diet for 14 weeks. Supplementation with GSCC and GXO decreases circulating triglycerides, the expression of genes involved in lipogenesis, without change in cholesterol and glucose concentrations and HOMA-IR. Only GSXO supplementation ameliorates body weight gain, insulin level, and HDL/LDL ratio. GSXO supplementation does not modify cardiac parameters; while supplementation with GSCC decreases heart rate and improves cardiac output. Interestingly, GSCC and GSXO reduce systolic and diastolic blood pressure with a differential time course of action. These effects are associated with substantial decrease of atherosclerotic lesions. These data reinforce the knowledge about the vascular tropism of apple supplementation and underscore their ability to improve both cardiovascular and metabolic alterations in a mouse model of atherosclerosis.

16.
Front Vet Sci ; 7: 566282, 2020.
Article in English | MEDLINE | ID: mdl-33102570

ABSTRACT

Increased consumption of energy-rich foods is a key factor in overweight, obesity, and associated metabolic disorders. This would be, at least in part, related to microbiota disturbance. In rodent models of obesity, microbiota disruption has been associated with alteration of the intestinal barrier, endotoxemia, inflammation grade, and insulin sensitivity. The aim of the present study was to assess the effects of a high-fat diet (HFD), fed at two energetic levels, on microbiota, intestinal barrier, and inflammatory and metabolic parameters in dogs. A HFD (33% fat as fed, 4,830 kcal/kg) was given to 24 healthy Beagle dogs at 100% (HF-100; n = 8) and at 150% (HF-150; n = 16) of their maintenance energy requirements for 8 weeks. Analysis of similarity revealed a significant difference in gut microbiota ß-diversity following the diet compared to week 0 in both groups while α-diversity was lower only in the HF-150 group. Firmicutes/Bacteroidetes ratio was higher in the HF-150 group compared to the HF-100 group at weeks 2 and 8. A reduction in insulin sensitivity was observed over time in the HF150 group. Neither endotoxemia nor inflammation was observed in either group, did not find supporting data for the hypothesis that the microbiota is involved in the decline of insulin sensitivity through metabolic endotoxemia and low-grade inflammation. Colonic permeability was increased at week 4 in both groups and returned to initial levels at week 8, and was associated with modifications to the expression of genes involved in colonic barrier function. The increase in intestinal permeability may have been caused by the altered intestinal microbiota and increased expression of genes encoding tight junction proteins might indicate a compensatory mechanism to restore normal permeability. Although simultaneous changes to the microbiota, barrier permeability, inflammatory, and metabolic status have not been observed, such a causal link cannot be excluded in dogs overfed on a HFD. Further studies are necessary to better understand the link between HFD, intestinal microbiota and the host.

17.
Sci Rep ; 10(1): 15585, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32973209

ABSTRACT

The aim of this study was to compare the kinetics of apolipoprotein (apo)A-I during fed and fasted states in humans, and to determine to what extent the intestine contributes to apoA-I production. A stable isotope study was conducted to determine the kinetics of apoA-I in preß1 high-density lipoprotein (HDL) and α-HDL. Six healthy male subjects received a constant intravenous infusion of 2H3-leucine for 14 h. Subjects in the fed group also received small hourly meals. Blood samples were collected hourly during tracer infusion and then daily for 4 days. Tracer enrichments were measured by mass spectrometry and then fitted to a compartmental model using asymptotic plateau of very-low-density lipoprotein (VLDL) apoB100 and triglyceride-rich lipoprotein (TRL) apoB48 as estimates of hepatic and intestinal precursor pools, respectively. The clearance rate of preß1-HDL-apoA-I was lower in fed individuals compared with fasted subjects (p < 0.05). No other differences in apoA-I production or clearance rates were observed between the groups. No significant correlation was observed between plasma apoC-III concentrations and apoA-I kinetic data. In contrast, HDL-apoC-III was inversely correlated with the conversion of α-HDL to preß1-HDL. Total apoA-I synthesis was not significantly increased in fed subjects. Hepatic production was not significantly different between the fed group (17.17 ± 2.75 mg/kg/day) and the fasted group (18.67 ± 1.69 mg/kg/day). Increase in intestinal apoA-I secretion in fed subjects was 2.20 ± 0.61 mg/kg/day. The HDL-apoA-I kinetics were similar in the fasted and fed groups, with 13% of the total apoA-I originating from the intestine with feeding.


Subject(s)
Apolipoprotein A-I/metabolism , Apolipoprotein B-100/blood , Fasting , Feeding Methods , Lipoproteins, HDL/blood , Lipoproteins, VLDL/blood , Lipoproteins/blood , Triglycerides/blood , Adult , Humans , Male
18.
J Pharmacol Exp Ther ; 375(2): 349-356, 2020 10 23.
Article in English | MEDLINE | ID: mdl-32873624

ABSTRACT

The aim of this work was to evaluate reverse cholesterol transport (RCT) in hamster, animal model expressing CETP under a high cholesterol diet (HF) supplemented with Ezetimibe using primary labelled macrophages. We studied three groups of hamsters (n=8/group) for 4 weeks: 1) chow diet group: Chow, 2) High cholesterol diet group: HF and 3) HF group supplemented with 0.01% of ezetimibe: HF+0.01%Ezet. Following intraperitoneal injection of 3H-cholesterol-labelled hamster primary macrophages, we measured the in vivo macrophage-to-feces RCT. .HF group exhibited an increase of triglycerides (TG), cholesterol, glucose in plasma and higher TG and cholesterol content in liver (p<0.01) compared to Chow group. Ezetimibe induced a significant decrease in plasma cholesterol with a lower LDL and VLDL cholesterol (p<0.001) and in liver cholesterol (p<0.001) and TG (p<0.01) content compared to HF. In vivo RCT essay showed an increase of tracer level in plasma and liver (p<0.05) but not in feces in HF compared to Chow group. The amount of labelled total sterol and cholesterol in liver and feces was significantly reduced (p<0.05) and increased (p=0.05) respectively with Ezetimibe treatment. No significant increase was obtained for labelled feces bile acids in HF+0.01%Ezet compared to HF. Ezetimibe decreased SCD1 gene expression and increased SR-B1 (p<0.05) in liver but did not affect NPC1L1 nor ABCG5 and ABCG8 expression in jejunum. In conclusion, ezetimibe exhibited an atheroprotective effect by enhancing RCT in hamster and decreasing LDL cholesterol. Ours findings showed also a hepatoprotective effect of ezetimibe by decreasing hepatic fat content. Significance Statement This work was assessed to determine the effect of ezetimibe treatment on high cholesterol diet induced disturbances and especially the effect on reverse cholesterol transport in animal model with CETP activity and using labelled primary hamster macrophages. We were able to demonstrate that ezetimibe exhibited an atheroprotective effect by enhancing RCT and by decreasing LDL cholesterol in hamster. We showed also a hepatoprotective effect of ezetimibe by decreasing hepatic fat content.


Subject(s)
Absorption, Physiological , Anticholesteremic Agents/pharmacology , Cholesterol/metabolism , Ezetimibe/pharmacology , Feces/chemistry , Macrophages/metabolism , Animals , Biological Transport , Cholesterol/administration & dosage , Cholesterol/blood , Cricetinae , Diet, High-Fat , Liver/drug effects , Liver/metabolism , Macrophages/drug effects , Male , Mesocricetus
19.
J Clin Endocrinol Metab ; 105(10)2020 10 01.
Article in English | MEDLINE | ID: mdl-32805740

ABSTRACT

CONTEXT: Evidence for an association between sphingolipids and metabolic disorders is increasingly reported. Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) improve apolipoprotein B100 (apoB100)-containing lipoprotein metabolism, but their effects on the sphingolipid content in lipoproteins remain unknown. OBJECTIVES: In subjects with hypertriglyceridemia, we analyzed the effect of n-3 LC-PUFAs on the turnover apoB100-containing lipoproteins and on their sphingolipid content and looked for the possible association between these lipid levels and apoB100-containing lipoprotein turnover parameters. METHODS: Six subjects underwent a kinetic study before and after n-3 supplementation for 2 months with 1 g of fish oil 3 times day containing 360 mg of eicosapentaenoic acid (EPA) and 240 mg of docosahexaenoic acid (DHA) in the form of triglycerides. We examined apoB100-containing lipoprotein turnover by primed perfusion labeled [5,5,5-2H3]-leucine and determined kinetic parameters using a multicompartmental model. We quantified sphingolipid species content in lipoproteins using mass spectrometry. RESULTS: Supplementation decreased very low-density lipoprotein (VLDL), triglyceride, and apoB100 concentrations. The VLDL neutral and polar lipids showed increased n-3 LC-PUFA and decreased n-6 LC-PUFA content. The conversion rate of VLDL1 to VLDL2 and of VLDL2 to LDL was increased. We measured a decrease in total apoB100 production and VLDL1 production. Supplementation reduced the total ceramide concentration in VLDL while the sphingomyelin content in LDL was increased. We found positive correlations between plasma palmitic acid and VLDL ceramide and between VLDL triglyceride and VLDL ceramide, and inverse correlations between VLDL n-3 LC-PUFA and VLDL production. CONCLUSION: Based on these results, we hypothesize that the improvement in apoB100 metabolism during n-3 LC-PUFA supplementation is contributed to by changes in sphingolipids.


Subject(s)
Apolipoprotein B-100/metabolism , Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Hypertriglyceridemia/drug therapy , Sphingolipids/metabolism , Adult , Humans , Hypertriglyceridemia/blood , Hypertriglyceridemia/metabolism , Lipoproteins, VLDL/blood , Lipoproteins, VLDL/metabolism , Male , Middle Aged , Pilot Projects , Sphingolipids/blood , Treatment Outcome
20.
Molecules ; 25(12)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575640

ABSTRACT

Non-alcoholic fatty liver disease represents the most common liver disease and is characterized by an excess of lipid accumulation in hepatocytes, mainly stored as triglycerides. Phaeodactylum tricornutum is a marine microalga, which is rich in bioactive molecules known to be hepatoprotective, such as n-3 long-chain polyunsaturated fatty acids and fucoxanthin. The aim of this study was to investigate the effects of a carotenoid extract from P. tricornutum in a cellular model of non-alcoholic fatty liver disease induced by palmitate treatment. The combined effects of carotenoids and lipids, especially n-3 long-chain polyunsaturated fatty acids, were also investigated by using a total lipophilic extract. HepG2 cells were exposed for 24 h to 250 µM palmitate with or without the addition of carotenoid extract (6 µg/mL) or total lipophilic extract (100 µg/mL). The addition of carotenoid extract or total lipophilic extract prevented the accumulation of triglycerides, total cholesterol and cholesterol esters. The carotenoid extract and total lipophilic extract also decreased the mRNA expression levels of genes involved in lipogenesis (ACACA, FASN, SCD and DGAT1) and cholesterol esterification (ACAT1/SOAT1). In addition, the total lipophilic extract also downregulated the LXR/NR1H3 and SREBF1 genes, which are involved in lipogenesis regulation. By contrast, the carotenoid extract increased the mRNA level of CPT1A, a ß-oxidation related gene, and reduced the lipid droplet accumulation. In conclusion, this study highlights the preventive effects against non-alcoholic fatty liver disease of the two microalga extracts.


Subject(s)
Carotenoids/pharmacology , Hepatocytes/metabolism , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Microalgae/chemistry , Non-alcoholic Fatty Liver Disease/metabolism , Palmitates/toxicity , Stramenopiles/chemistry , Carotenoids/chemistry , Gene Expression Regulation/drug effects , Hep G2 Cells , Hepatocytes/pathology , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...