Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
R Soc Open Sci ; 11(6): 231712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39100155

ABSTRACT

The skin is an envelope that covers the entire body. Nowadays, understanding and studying the mechanical, biological and sensory properties of the skin is essential, especially in dermatology and cosmetology. The in-depth study of the skin's mechanical behaviour is a highly intriguing challenge, enabling the differentiation of the behaviour of each layer. An extension device was developed to perform relaxation and extension tests to characterize the skin. The device has also been coupled with imaging tools (LC-OCT and ultrasound), allowing us to observe layer-by-layer deformations during the tests. Relaxation tests revealed significant skin anisotropy, as well as an influence of age and gender on skin viscoelastic parameters calculated from relaxation curves and a skin viscoelastic model. These tests also unveiled their ability to distinguish certain characteristic pathologies that alter the mechanical properties of the skin, such as scleroderma or heliodermatitis. Furthermore, the optical-mechanical coupling and deformation calculation through image analysis demonstrated that the skin layers exhibit distinct mechanical behaviours owing to their different structures. Finally, Poisson's ratio of the skin was obtained by calculating the deformation in two directions for each layer.

2.
J Mech Behav Biomed Mater ; 156: 106597, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810542

ABSTRACT

The skin, the outermost organ of the human body, is vital for sensing and responding to stimuli through mechanotransduction. It is constantly exposed to mechanical stress. Consequently, various mechanical therapies, including compression, massage, and microneedling, have become routine practices for skin healing and regeneration. However, these traditional methods require direct skin contact, restricting their applicability. To address this constraint, we developed shear wave stimulation (SWS), a contactless mechanical stimulation technique. The effectiveness of SWS was compared with that of a commercial compression bioreactor used on reconstructed skin at various stages of maturity. Despite the distinct stimulus conditions applied by the two methods, SWS yielded remarkable outcomes, similar to the effects of the compression bioreactor. It significantly increased the shear modulus of tissue-engineered skin, heightened the density of collagen and elastin fibers, and resulted in an augmentation of fibroblasts in terms of their number and length. Notably, SWS exhibited diverse effects in the low- and high-frequency modes, highlighting the importance of fine-tuning the stimulus intensity. These results unequivocally demonstrated the capability of SWS to enhance the mechanical functions of the skin in vitro, making it a promising option for addressing wound healing and stretch mark recovery.


Subject(s)
Skin , Skin/cytology , Humans , Stress, Mechanical , Tissue Engineering , Mechanical Phenomena , Biomechanical Phenomena , Fibroblasts/cytology , Animals , Collagen , Shear Strength , Elastin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL