Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 917: 170457, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38307278

ABSTRACT

Mercury (Hg) is naturally released by volcanoes and geothermal systems, but the global flux from these natural sources is highly uncertain due to a lack of direct measurements and uncertainties with upscaling Hg/SO2 mass ratios to estimate Hg fluxes. The 2021 and 2022 eruptions of Fagradalsfjall volcano, southwest Iceland, provided an opportunity to measure Hg concentrations and fluxes from a hotspot/rift system using modern analytical techniques. We measured gaseous Hg and SO2 concentrations in the volcanic plume by near-source drone-based sampling and simultaneous downwind ground-based sampling. Mean Hg/SO2 was an order of magnitude higher at the downwind locations relative to near-source data. This was attributed to the elevated local background Hg at ground level (4.0 ng m-3) likely due to emissions from outgassing lava fields. The background-corrected plume Hg/SO2 mass ratio (5.6 × 10-8) therefore appeared conservative from the near-source to several hundred meters distant, which has important implications for the upscaling of volcanic Hg fluxes based on SO2 measurements. Using this ratio and the total SO2 flux from both eruptions, we estimate the total mass of gaseous Hg released from the 2021 and 2022 Fagradalsfjall eruptions was 46 ± 33 kg, equivalent to a flux of 0.23 ± 0.17 kg d-1. This is the lowest Hg flux estimate in the literature for active open-conduit volcanoes, which range from 0.6 to 12 kg d-1 for other hotspot/rift volcanoes, and 0.5-110 kg d-1 for arc volcanoes. Our results suggest that Icelandic volcanic systems are fed from an especially Hg-poor mantle. Furthermore, we demonstrate that the aerial near-source plume Hg measurement is feasible with a drone-based active sampling configuration that captures all gaseous and particulate Hg species, and recommend this as the preferred method for quantifying volcanic Hg emissions going forward.

3.
Sci Total Environ ; 824: 153715, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35149079

ABSTRACT

Dramatic environmental shifts are occuring throughout the Arctic from climate change, with consequences for the cycling of mercury (Hg). This review summarizes the latest science on how climate change is influencing Hg transport and biogeochemical cycling in Arctic terrestrial, freshwater and marine ecosystems. As environmental changes in the Arctic continue to accelerate, a clearer picture is emerging of the profound shifts in the climate and cryosphere, and their connections to Hg cycling. Modeling results suggest climate influences seasonal and interannual variability of atmospheric Hg deposition. The clearest evidence of current climate change effects is for Hg transport from terrestrial catchments, where widespread permafrost thaw, glacier melt and coastal erosion are increasing the export of Hg to downstream environments. Recent estimates suggest Arctic permafrost is a large global reservoir of Hg, which is vulnerable to degradation with climate warming, although the fate of permafrost soil Hg is unclear. The increasing development of thermokarst features, the formation and expansion of thaw lakes, and increased soil erosion in terrestrial landscapes are increasing river transport of particulate-bound Hg and altering conditions for aquatic Hg transformations. Greater organic matter transport may also be influencing the downstream transport and fate of Hg. More severe and frequent wildfires within the Arctic and across boreal regions may be contributing to the atmospheric pool of Hg. Climate change influences on Hg biogeochemical cycling remain poorly understood. Seasonal evasion and retention of inorganic Hg may be altered by reduced sea-ice cover and higher chloride content in snow. Experimental evidence indicates warmer temperatures enhance methylmercury production in ocean and lake sediments as well as in tundra soils. Improved geographic coverage of measurements and modeling approaches are needed to better evaluate net effects of climate change and long-term implications for Hg contamination in the Arctic.


Subject(s)
Mercury , Arctic Regions , Climate Change , Ecosystem , Lakes , Mercury/analysis
4.
Environ Sci Technol ; 56(1): 271-281, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34914363

ABSTRACT

We assessed long-term changes in the feeding ecology and mercury (Hg) accumulation in Eastern High Arctic-Baffin Bay beluga (Delphinapterus leucas) using total Hg and stable isotope (δ13C, δ15N) assays in teeth samples from historical (1854-1905) and modern (1985-2000) populations. Mean δ13C values in teeth declined significantly over time, from -13.01 ± 0.55‰ historically to -14.41 ± 0.28‰ in 2000, while no consistent pattern was evident for δ15N due to high individual variability within each period. The temporal shift in isotopic niche is consistent with beluga feeding ecology changing in recent decades to a more pelagic and less isotopically diverse diet or an ecosystem wide change in isotope profiles. Mercury concentrations in modern beluga teeth were 3-5 times higher on average than those in historical beluga. These results are similar to the long-term trends of Hg and feeding ecology reported in other beluga populations and in other Arctic marine predators. Similar feeding ecology shifts across regions and species indicate a consistent increased pelagic diet response to climate change as the Arctic Ocean progressively warmed and lost sea ice. Previously, significant temporal Hg increase in beluga and other Arctic animals was attributed solely to direct inputs of anthropogenic Hg from long-range sources. Recent advances in understanding the Arctic marine Hg cycle suggest an additional, complementary possibility─increased inputs of terrestrial Hg of mixed anthropogenic-natural origin, mobilized from permafrost and other Arctic soils by climate warming. At present, it is not possible to assign relative importance to the two processes in explaining the rise of Hg concentrations in modern Arctic marine predators.


Subject(s)
Beluga Whale , Mercury , Water Pollutants, Chemical , Animals , Arctic Regions , Beluga Whale/physiology , Ecosystem , Environmental Monitoring , Mercury/analysis , Water Pollutants, Chemical/analysis
5.
Sci Rep ; 11(1): 10970, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34040077

ABSTRACT

Ocean sediments are the largest sink for mercury (Hg) sequestration and hence an important part of the global Hg cycle1. Yet accepted global average Hg flux data for deep-ocean sediments (> 200 m depth) are not based on measurements on sediments but are inferred from sinking particulates2. Mercury fluxes have never been reported from the deepest zone, the hadal (> 6 km depth). Here we report the first measurements of Hg fluxes from two hadal trenches (Atacama and Kermadec) and adjacent abyssal areas (2-6 km). Mercury concentrations of up to 400 ng g-1 were the highest recorded in marine sediments remote from anthropogenic or hydrothermal sources. The two trench systems differed significantly in Hg concentrations and fluxes, but hadal and abyssal areas within each system did not. The relatively low recent mean flux at Kermadec was 6-15 times higher than the inferred deep-ocean average1,3, while the median flux across all cores was 22-56 times higher. Thus, some hadal and abyssal sediments are Hg accumulation hot-spots. The hadal zone comprises only ~ 1% of the deep-ocean area, yet a preliminary estimate based on sediment Hg and particulate organic carbon (POC) fluxes suggests total hadal Hg accumulation may be 12-30% of the estimate for the entire deep-ocean. The few abyssal data show equally high Hg fluxes near trench systems. These results highlight a need for further research into deep-ocean Hg fluxes to better constrain global Hg models.

6.
Sci Total Environ ; 757: 143800, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33280881

ABSTRACT

Volcanism is a potentially important natural source of mercury (Hg) to the environment. However, its impact on the global Hg cycle remains poorly understood despite advances over the last five decades. This represents a major uncertainty in our understanding of the relative contributions of natural and anthropogenic Hg sources to the global atmosphere. This uncertainty, in turn, impacts evaluation of the effectiveness of policies to mitigate the impact of anthropogenic Hg on the environment. Here we critically review recent progress in volcanic Hg emission research, including advances in sampling methods and understanding of the post-emission behavior of Hg in the atmosphere. Our statistical analysis of the limited available data shows that the plumes of non-arc volcanoes exhibit significantly higher Hg concentrations than arc volcanoes, yet the latter emit 3-fold higher Hg fluxes on average. Arc volcanism also dominates volcanic gas emissions globally, indicating that arc volcanoes should be a priority for future Hg emission research. We explore several methodological challenges that continue to hinder progress in quantifying global volcanic Hg emissions, and discuss the importance of longer time-frame data collection to capture temporal variations in emissions. Recommendations are proposed for working toward a more accurate assessment of the global volcanic Hg flux. A detailed summary of all published volcanic Hg emissions data worldwide is also presented as a reference tool for future work.

7.
Sci Adv ; 5(10): eaaw4018, 2019 10.
Article in English | MEDLINE | ID: mdl-31681836

ABSTRACT

During the past 600 million years of Earth history, four of five major extinction events were synchronous with volcanism in large igneous provinces. Despite improved temporal frameworks for these events, the mechanisms causing extinctions remain unclear. Volcanic emissions of greenhouse gases, SO2, and halocarbons are generally considered as major factors in the biotic crises, resulting in global warming, acid deposition, and ozone layer depletion. Here, we show that pulsed elevated concentrations of mercury in marine and terrestrial sediments across the Triassic-Jurassic boundary in southern Scandinavia and northern Germany correlate with intense volcanic activity in the Central Atlantic Magmatic Province. The increased levels of mercury-the most genotoxic element on Earth-also correlate with high occurrences of abnormal fern spores, indicating severe environmental stress and genetic disturbance in the parent plants. We conclude that this offers compelling evidence that emissions of toxic volcanogenic substances contributed to the end-Triassic biotic crisis.


Subject(s)
Embryophyta , Extinction, Biological , Mercury , Volcanic Eruptions , Embryophyta/drug effects , Embryophyta/genetics , Ferns , Fossils , Germany , Mercury/toxicity , Mutagenesis , Scandinavian and Nordic Countries , Stress, Physiological
8.
Sci Total Environ ; 674: 58-70, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31003088

ABSTRACT

The Minamata Convention to reduce anthropogenic mercury (Hg) emissions entered into force in 2017, and attention is now focused on how to best monitor its effectiveness at reducing Hg exposure to humans. A key question is how closely Hg concentrations in the human food chain, especially in fish and other aquatic wildlife, will track the changes in atmospheric Hg that are expected to occur following anthropogenic emission reductions. We investigated this question by evaluating several regional groups of case studies where Hg concentrations in aquatic biota have been monitored continuously or intermittently for several decades. Our analysis shows that in most cases Hg time trends in biota did not agree with concurrent Hg trends in atmospheric deposition or concentrations, and the divergence between the two trends has become more apparent over the past two decades. An over-arching general explanation for these results is that the impact of changing atmospheric inputs on biotic Hg is masked by two factors: 1) The aquatic environment contains a large inventory of legacy emitted Hg that remains available for bio-uptake leading to a substantial lag in biotic response time to a change in external inputs; and 2) Biotic Hg trends reflect the dominant effects of changes in multi-causal, local and regional processes (e.g., aquatic or terrestrial biogeochemical processes, feeding ecology, climate) that control the speciation, bioavailability, and bio-uptake of both present-day and legacy emitted Hg. Globally, climate change has become the most prevalent contributor to the divergence. A wide range of biotic Hg outcomes can thus be expected as anthropogenic atmospheric Hg emissions decline, depending on how these processes operate on specific regions and specific organisms. Therefore, evaluating the effectiveness of the Minamata Convention will require biomonitoring of multiple species that represent different trophic and ecological niches in multiple regions of the world.


Subject(s)
Air Pollutants/analysis , Aquatic Organisms/metabolism , Environmental Monitoring , Environmental Policy , Mercury/analysis , Animals , Ecosystem , Mercury/metabolism
9.
Article in English | MEDLINE | ID: mdl-28157152

ABSTRACT

Aquatic ecosystems are an essential component of the biogeochemical cycle of mercury (Hg), as inorganic Hg can be converted to toxic methylmercury (MeHg) in these environments and reemissions of elemental Hg rival anthropogenic Hg releases on a global scale. Quantification of effluent Hg releases to aquatic systems globally has focused on discharges to the global oceans, rather than contributions to freshwater systems that affect local exposures and risks associated with MeHg. Here we produce a first-estimate of sector-specific, spatially resolved global aquatic Hg discharges to freshwater systems. We compare our release estimates to atmospheric sources that have been quantified elsewhere. By analyzing available quantitative and qualitative information, we estimate that present-day global Hg releases to freshwater environments (rivers and lakes) associated with anthropogenic activities have a lower bound of ~1000 Mg· a-1. Artisanal and small-scale gold mining (ASGM) represents the single largest source, followed by disposal of mercury-containing products and domestic waste water, metal production, and releases from industrial installations such as chlor-alkali plants and oil refineries. In addition to these direct anthropogenic inputs, diffuse inputs from land management activities and remobilization of Hg previously accumulated in terrestrial ecosystems are likely comparable in magnitude. Aquatic discharges of Hg are greatly understudied and further constraining associated data gaps is crucial for reducing the uncertainties in the global biogeochemical Hg budget.


Subject(s)
Fresh Water/chemistry , Mercury/analysis , Water Pollutants, Chemical/analysis , Ecosystem , Mining/methods , Rivers/chemistry
10.
Sci Total Environ ; 568: 1157-1170, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27102272

ABSTRACT

For the Western North America Mercury Synthesis, we compiled mercury records from 165 dated sediment cores from 138 natural lakes across western North America. Lake sediments are accepted as faithful recorders of historical mercury accumulation rates, and regional and sub-regional temporal and spatial trends were analyzed with descriptive and inferential statistics. Mercury accumulation rates in sediments have increased, on average, four times (4×) from 1850 to 2000 and continue to increase by approximately 0.2µg/m(2) per year. Lakes with the greatest increases were influenced by the Flin Flon smelter, followed by lakes directly affected by mining and wastewater discharges. Of lakes not directly affected by point sources, there is a clear separation in mercury accumulation rates between lakes with no/little watershed development and lakes with extensive watershed development for agricultural and/or residential purposes. Lakes in the latter group exhibited a sharp increase in mercury accumulation rates with human settlement, stabilizing after 1950 at five times (5×) 1850 rates. Mercury accumulation rates in lakes with no/little watershed development were controlled primarily by relative watershed size prior to 1850, and since have exhibited modest increases (in absolute terms and compared to that described above) associated with (regional and global) industrialization. A sub-regional analysis highlighted that in the ecoregion Northwestern Forest Mountains, <1% of mercury deposited to watersheds is delivered to lakes. Research is warranted to understand whether mountainous watersheds act as permanent sinks for mercury or if export of "legacy" mercury (deposited in years past) will delay recovery when/if emissions reductions are achieved.

11.
Sci Total Environ ; 506-507: 430-43, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25437761

ABSTRACT

With declining sea ice conditions in Arctic regions owing to changing climate, the large prospective reservoirs of oil and gas in Baffin Bay and Davis Strait are increasingly accessible, and the interest in offshore exploration and shipping through these regions has increased. Both of these activities are associated with the risk of hydrocarbon releases into the marine ecosystem. However, hydrocarbons are also present naturally in marine environments, in some cases deriving from oil seeps. We have analyzed hydrocarbon concentrations in eleven sediment cores collected from northern Baffin Bay during 2008 and 2009 Amundsen expeditions and have examined the hydrocarbon compositions in both pre- and post-industrial periods (i.e., before and after 1900) to assess the sources of hydrocarbons, and their temporal and spatial variabilities. Concentrations of ΣPAHs ranged from 341 to 2693 ng g(-1) dw, with concentrations in cores from sites within the North Water (NOW) Polynya generally higher. Individual PAH concentrations did not exceed concentrations of concern for marine aquatic life, with one exception found in a core collected within the NOW (one of the seven sediment core samples). Hydrocarbon biomarkers, including alkane profiles, OEP (odd-to-even preference), and TAR (terrigenous/aquatic ratios) values indicated that organic carbon at all sites is derived from both terrigenous higher plants and marine algae, the former being of greater significance at coastal sites, and the latter at the deepest sites at the southern boundary of the NOW. Biomarker ratios and chemical profiles indicate that petrogenic sources dominate over combustion sources, and thus long-range atmospheric transport is less significant than inputs from weathering. Present-day and historic pre-1900 hydrocarbon concentrations exhibited less than an order of magnitude difference for most compounds at all sites. The dataset presented here provides a baseline record of hydrocarbon concentrations in Baffin Bay sediments in advance of offshore exploration and increased shipping activities.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Arctic Regions , Bays/chemistry , Canada
12.
Sci Total Environ ; 414: 22-42, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22104383

ABSTRACT

Recent studies have shown that climate change is already having significant impacts on many aspects of transport pathways, speciation and cycling of mercury within Arctic ecosystems. For example, the extensive loss of sea-ice in the Arctic Ocean and the concurrent shift from greater proportions of perennial to annual types have been shown to promote changes in primary productivity, shift foodweb structures, alter mercury methylation and demethylation rates, and influence mercury distribution and transport across the ocean-sea-ice-atmosphere interface (bottom-up processes). In addition, changes in animal social behavior associated with changing sea-ice regimes can affect dietary exposure to mercury (top-down processes). In this review, we address these and other possible ramifications of climate variability on mercury cycling, processes and exposure by applying recent literature to the following nine questions; 1) What impact has climate change had on Arctic physical characteristics and processes? 2) How do rising temperatures affect atmospheric mercury chemistry? 3) Will a decrease in sea-ice coverage have an impact on the amount of atmospheric mercury deposited to or emitted from the Arctic Ocean, and if so, how? 4) Does climate affect air-surface mercury flux, and riverine mercury fluxes, in Arctic freshwater and terrestrial systems, and if so, how? 5) How does climate change affect mercury methylation/demethylation in different compartments in the Arctic Ocean and freshwater systems? 6) How will climate change alter the structure and dynamics of freshwater food webs, and thereby affect the bioaccumulation of mercury? 7) How will climate change alter the structure and dynamics of marine food webs, and thereby affect the bioaccumulation of marine mercury? 8) What are the likely mercury emissions from melting glaciers and thawing permafrost under climate change scenarios? and 9) What can be learned from current mass balance inventories of mercury in the Arctic? The review finishes with several conclusions and recommendations.


Subject(s)
Atmosphere/chemistry , Climate Change , Ecosystem , Environmental Pollutants/analysis , Ice Cover/chemistry , Mercury/analysis , Seawater/chemistry , Animals , Arctic Regions , Environmental Pollutants/metabolism , Environmental Pollutants/pharmacokinetics , Fresh Water/chemistry , Mercury/metabolism , Mercury/pharmacokinetics , Methylation , Temperature
14.
Sci Total Environ ; 407(24): 6120-31, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19781740

ABSTRACT

BACKGROUND: Because of concern about the recently increasing levels of biological Hg in some areas of the Arctic, we examined the literature concerning the long-term changes of Hg in humans and selected Arctic marine mammals and birds of prey since pre-industrial times (i.e. before 1800A.D.), to determine the anthropogenic contribution to present-day Hg concentrations and the historical timing of any changes. METHODS: Mercury data from published articles were extracted on historical and pre-industrial concentrations as percentages of the recent maximum, as well as the man-made contribution was calculated and depicted in a uniform manner to provide an overview of the development over time. RESULTS AND DISCUSSION: Trends of [Hg] in hard tissues such as teeth, hair and feathers consistently showed that there had been an order-of-magnitude increase of [Hg] in Arctic marine foodweb-based animals that began in the mid- to late-19th Century and accelerated in the 20th Century. The median man-made contribution to present-day Hg concentrations was 92.4% ranging from 74.2 to 94.4%. Confidence in our data was increased by accompanying data in some studies on stable isotopes (delta(13)C, delta(15)N), which allowed us to normalize where necessary for changes in animal trophic position and feeding location over time, and by careful attention to the possibility of sample chemical diagenesis (Hg contamination or loss) which can alter the Hg content of ancient hard tissues. CONCLUSIONS: Wildlife hard tissue matrices provide consistent information with respect to the steep onset of Hg exposure of Arctic wildlife beginning in the latter half of the 19th Century. Today the man-made contribution was found to be above 92%. Stable isotope analyses provide important information to normalize for possible changes in diet over time, and are highly relevant to include when interpreting temporal trends, baseline concentrations as well as man-made anthropogenic contribution of Hg.


Subject(s)
Mercury/metabolism , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical/analysis , Animals , Arctic Regions , Environmental Monitoring , Feathers/metabolism , Food Chain , Hair/metabolism , Tooth/metabolism , Water Pollution, Chemical/statistics & numerical data
16.
Mar Pollut Bull ; 56(12): 1963-5, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18930507

ABSTRACT

The rapid and high bioaccumulation of mercury in marine mammals and its spatial and temporal variations have been a major puzzle in the Arctic. While extensive efforts have been focussed on the monitoring and chemistry of atmospheric mercury depletion events, a recent mass budget estimate of mercury in the Arctic suggests that we have overlooked the role of the ocean itself. Only through focussed studies on Hg dynamics in the Arctic Ocean under a changing climate are we going to understand what the risk of mercury is to those marine ecosystems and the people who rely on them.


Subject(s)
Air Pollutants/metabolism , Mercury/metabolism , Seawater/chemistry , Water Pollutants, Chemical/metabolism , Air Pollutants/chemistry , Animals , Arctic Regions , Cetacea , Geologic Sediments , Humans , Mercury/chemistry , Oceans and Seas , Water Pollutants, Chemical/chemistry
17.
Sci Total Environ ; 402(1): 43-50, 2008 Aug 25.
Article in English | MEDLINE | ID: mdl-18534665

ABSTRACT

Selenium (Se) is an essential element which has been shown to play an important role in protecting marine mammals against the toxic effects of mercury (Hg) and other metals. It has been suggested that metal concentration in marine mammal teeth can potentially be used as bioindicators for body burden. The objective of this study was to investigate the relationship between Se concentrations in beluga (Delphinapterus leucas) teeth and those previously measured in soft tissues (liver, kidney, muscle and muktuk). Tooth Hg concentrations are also measured, and the relationships between Se and Hg in teeth and soft tissues are examined. Se in the teeth of beluga was measured using hydride generation atomic fluorescence spectrometry (HG-AFS) and Hg in beluga teeth was measured by cold-vapour atomic absorption. Tooth Se concentrations ranged from 108 ng/g to 245 ng/g dry weight, and tooth Hg concentrations ranged from 10 to 189 ng/g dry weight. In the soft tissues, Se concentrations were highest in the liver, followed by kidney, muktuk, and muscle. There were significant correlations between tooth Se concentrations and animal age, tooth Se and liver and muscle Se, and between liver Se and animal age. The molar ratio of Hg:Se in the liver was found to be 0.70. This study is the first to measure Se in the teeth of a marine mammal species, and HG-AFS is found to be an effective technique for determining Se in beluga teeth. Tooth Se can be used as predictor for liver and muscle Se, although these relationships may be strongly influenced by the association of Se with Hg in marine mammal tissues. This study contributes to an increased understanding of the storage and metabolism of Se in marine mammals.


Subject(s)
Beluga Whale , Liver/drug effects , Mercury/pharmacokinetics , Muscles/drug effects , Selenium/pharmacokinetics , Tooth/drug effects , Water Pollutants, Chemical/pharmacokinetics , Animals , Environmental Monitoring , Food Contamination , Liver/metabolism , Mercury/analysis , Muscles/metabolism , Risk Assessment/methods , Selenium/analysis , Tissue Distribution , Tooth/chemistry , Tooth/metabolism , Water Pollutants, Chemical/analysis
18.
J Environ Monit ; 6(4): 351-5, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15054545

ABSTRACT

The goal of this paper is to describe and discuss statistical power with respect to mercury in Arctic biota, using data gathered during the past two or three decades, mostly under the auspices of AMAP Phases I and II. It will describe the current levels of power of existing data sets to detect temporal trends of Hg concentrations. If the desired power is fixed to an appropriate magnitude, the minimum size of a detectable trend within a specified time period or the number of years that is required to detect a certain trend could be estimated provided that the random between-year variation for the current time-series is known. These various measures of performance of the AMAP mercury time-series, derived from the power analysis, are discussed in some detail. The number of years required to detect a certain trend at a particular power at a specific Type I error rate (alpha) is compared with the actual number of years available when the AMAP Phase II assessment was carried out. In general the investigated time-series were too short to possess an acceptable statistical power. The effect of varying the Type-I error rate, the slope of a trend and the desired power is investigated to rank the importance of the various components regulating the statistical power. The consequence of sampling less frequently than once a year is considerable loss of power.


Subject(s)
Food Chain , Mercury/analysis , Animals , Arctic Regions , Data Interpretation, Statistical , Environmental Monitoring/statistics & numerical data , Mercury/pharmacokinetics , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL