Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Pathol ; 192(7): 1001-1015, 2022 07.
Article in English | MEDLINE | ID: mdl-35469796

ABSTRACT

Vascular injury is a well-established, disease-modifying factor in acute respiratory distress syndrome (ARDS) pathogenesis. Recently, coronavirus disease 2019 (COVID-19)-induced injury to the vascular compartment has been linked to complement activation, microvascular thrombosis, and dysregulated immune responses. This study sought to assess whether aberrant vascular activation in this prothrombotic context was associated with the induction of necroptotic vascular cell death. To achieve this, proteomic analysis was performed on blood samples from COVID-19 subjects at distinct time points during ARDS pathogenesis (hospitalized at risk, N = 59; ARDS, N = 31; and recovery, N = 12). Assessment of circulating vascular markers in the at-risk cohort revealed a signature of low vascular protein abundance that tracked with low platelet levels and increased mortality. This signature was replicated in the ARDS cohort and correlated with increased plasma angiopoietin 2 levels. COVID-19 ARDS lung autopsy immunostaining confirmed a link between vascular injury (angiopoietin 2) and platelet-rich microthrombi (CD61) and induction of necrotic cell death [phosphorylated mixed lineage kinase domain-like (pMLKL)]. Among recovery subjects, the vascular signature identified patients with poor functional outcomes. Taken together, this vascular injury signature was associated with low platelet levels and increased mortality and can be used to identify ARDS patients most likely to benefit from vascular targeted therapies.


Subject(s)
Angiopoietin-2 , COVID-19 , Necroptosis , Respiratory Distress Syndrome , Angiopoietin-2/metabolism , COVID-19/complications , Humans , Proteomics , Respiratory Distress Syndrome/virology
2.
Transplantation ; 104(3): 511-515, 2020 03.
Article in English | MEDLINE | ID: mdl-31688808

ABSTRACT

BACKGROUND: Establishing lung lymphatic drainage is thought to be important for successful lung transplantation. To date, there has been a complete absence of knowledge of how lymphatic connections are reestablished after lung transplant, despite evidence suggesting that this does indeed occur. The present study aimed to elucidate whether and how lymphatic anastomosis occurs after lung transplant. METHODS: An orthotopic murine model of lung transplant using lymphatic reporter mice and whole mount immunohistochemistry was used to evaluate the lymphatic vasculature and donor-host connections after lung transplantation. RESULTS: Immunohistochemistry of transplanted lungs demonstrated robust lymphatic vessels, and functional assays demonstrated lymphatic drainage in the transplanted lung that was comparable with that in native lungs. Lymphatic vessels in the donor lung exhibited active sprouting toward the host at the anastomosis within the first 3 days after lung transplantation, with more numerous and complex lymphatic sprouting developing thereafter. Donor lymphatic vessels were numerous at the site of anastomosis by day 14 after lung transplantation and formed physical connections with host lymphatic vessels, demonstrating a mechanism by which lymphatic drainage is reestablished in the transplanted lung. CONCLUSIONS: Lymphatic drainage after lung transplantation is established by active sprouting of donor lymphatic vessels towards the host and the formation of donor-host lymphatic connections at the level of the transplant anastomosis.


Subject(s)
Allografts/physiology , Lung Transplantation , Lung/physiology , Lymphangiogenesis/physiology , Lymphatic Vessels/physiology , Allografts/diagnostic imaging , Animals , Fluorescent Dyes/chemistry , Genes, Reporter/genetics , Graft Survival/physiology , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Lung/diagnostic imaging , Lymphatic Vessels/diagnostic imaging , Mice , Mice, Transgenic , Microscopy, Fluorescence , Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...