Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(6)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38341791

ABSTRACT

A layered sodium-ion battery cathode, O3/P3/P2-type NaNi1/3Mn1/3Fe1/3O2, has been systematically investigated by first-principles density functional theory to explore the detailed structural and Na-ion diffusion behavior during desodiation. Our results suggest that the (NaO6) spacing is greatest in the P3 phase and lowest in the O3 phase, with the P2 phase exhibiting intermediate spacing. During desodiation, the intermediate stages have a greater (NaO6) spacing than the initial and final stages. The great (NaO6) spacing facilitates the formation of the P3 phase, resulting in the structural evolution of NaxNi1/3Mn1/3Fe1/3O2 from the O3 to the P3 phase at x ≈ 0.59, finally reaching the O3 structure again at x ≈ 0.12. The electronic structure clearly proves that both Ni and Fe are active in O3/P3/P2-type NaxNi1/3Mn1/3Fe1/3O2. Ni2+ is oxidized to Ni3+ as Na content decreases from x = 1 to x = 0.66, then further oxidized to Ni4+ at x = 0.33, and finally, Fe3+ → Fe4+ oxidation occurs at x = 0. In the Na ion diffusion behavior, the order of the barrier is O3 (0.82 eV) > P2 (0.53 eV) > P3 (0.35 eV) at the initial stage, whereas it is O3 (0.53 eV) > P3 (0.21 eV) > P2 (0.16 eV) at a highly desodiated stage. The former can be traced back to the (NaO6) spacing, but the latter is related to the different Na sites. Our results thus provide a factor of the structural evolution and Na ion diffusion barrier by considering (NaO6) width and Na site changes during desodiation.

2.
Phys Chem Chem Phys ; 26(5): 4455-4465, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38240145

ABSTRACT

Storage capacity, average open circuit voltage (OCV), diffusion barrier, lattice parameter changes, etc. are key indicators of whether a material would be suitable for use as a Li-ion or non-Li-ion battery (LIB or NLIB) anode. The rapid development of 2D materials over the past few decades has opened up new possibilities for these metrics. Using first-principles calculations, we prove that two 2D materials, TiB4 and SrB8, show excellent performance in terms of the above metrics when used as anodes for LIBs or NLIBs. As detailed, TiB4 has an Li\Na\K\Ca storage capacity of 588 mA h g-1, 588 mA h g-1, 588 mA h g-1, and 1176 mA h g-1, respectively, and SrB8 has an Li\Na\K\Ca storage capacity of 308 mA h g-1, 308 mA h g-1, 462 mA h g-1, and 616 mA h g-1, respectively, and they show good electrical conductivity whether existing Li, Na, K or Ca is adsorbed or not. The diffusion barriers on both surfaces are low, indicating good rate performance. The average OCV is also very low. In particular, the lattice parameters of the two materials change very little during the embedding of Li\Na\K\Ca. For Ti9B36 the corresponding values are about 0.37% (Li), 0.33% (Na), 0.64% (K) and 0.03% (Ca), and for Sr8B64 the corresponding values are about 0.70% (Li), 0.16% (Na), 0.13% (K) and 0.004% (Ca), which imply zero strain-like character and great cycling performance. All the above results show that TiB4 and SrB8 monolayers are very promising Li\Na\K\Ca ion battery anodes.

3.
RSC Adv ; 13(24): 16758-16764, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37284184

ABSTRACT

Novel two-dimensional (2D) electrode materials have become a new frontier for mining electrode materials for Li-ion batteries (LIBs) and Na-ion batteries (NIBs). Herein, based on first-principles calculations, we present a systematic study on the Li and Na storage behaviors in Calypso-predicted completely flat 2D boron oxide (l-B2O) with large mesh pores. We start our calculations from geometrical optimization, followed by a performance evaluation of Li/Na adsorption and migration processes. Finally, the specific capacity and average open-circuit voltage are evaluated. Our study reveals that l-B2O has good electrical conductivity before and after Li/Na adsorption and the Li/Na diffusion barrier height and average open-circuit voltage are both low, which is beneficial to the rate performance and full-cell operation voltage, respectively. Furthermore, it suffers a small lattice change (<1.7%), ensuring good cycling performance. In particular, we find that the Li and Na theoretical specific capacities of l-B2O can reach up to 1068.5 mA h g-1 and 712.3 mA h g-1, respectively, which are almost 2-3 times higher than graphite (372 mA h g-1). All the above outcomes indicate that 2D l-B2O is a promising anode material for LIBs and NIBs.

4.
J Chem Phys ; 158(12): 124702, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37003760

ABSTRACT

The layered LiMO2 (M = Co, Ni, and Mn) materials are commonly used as the cathode materials in the lithium-ion battery due to the distinctive layer structure for lithium extraction and insertion. Although their electrochemical properties have been extensively studied, the structural and magnetic properties of LiNiO2 are still under considerable debate, and the magnetic properties of monoclinic LiMnO2 are seldom reported. In this work, a detailed study of LiNiO2, LiMnO2, and a half-doped material LiNi0.5Mn0.5O2 is performed via both first-principles calculations and Monte Carlo simulations based on the effective spin Hamiltonian model. Through considering different structures, it is verified that a structure with a zigzag-type pattern is the most stable one of LiNiO2. Moreover, in order to figure out the magnetic properties, the spin exchange interactions are calculated, and then magnetic ground states are predicted in these three systems. The results show that LiNiO2 forms a spiral order that is caused by the competition from both the short-range and long-range spin exchange interactions, whereas the magnetic ground state of LiMnO2 is collinearly antiferromagnetic due to its nearest and next-nearest neighbor antiferromagnetic spin exchange interactions. However, LiNi0.5Mn0.5O2 is collinearly ferrimagnetic because of the ferromagnetic nearest neighbor Ni-Ni and Mn-Mn exchange interactions. Our work demonstrates the competition between the different exchange interactions in these cathode materials, which may be relevant to the performance of the lithium-ion battery.

5.
ACS Appl Mater Interfaces ; 15(10): 12967-12975, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36878728

ABSTRACT

Anode-free lithium (Li) metal batteries (AFLMBs) could provide a specific energy over 500 Wh/kg, but their cycle life requires improvement. In this work, we propose a new method to calculate the real Coulombic efficiency (CE) of the Li metal during the cycling of AFLMBs. Through this approach, we find low rate discharging unfavorable for Li CE, which is mitigated through electrolyte optimization. In contrast, high rate discharging boosts Li reversibility, indicating AFLMBs to be intrinsically suited for high power use cases. However, AFLMBs still fail rapidly, due to the Li stripping overpotential buildup, which is mitigated by a zinc coating that enables a better electron/ion transferring network. We believe well-targeted strategies need to be better developed to synergize with the intrinsic features of AFLMBs to enable their commercialization in the future.

6.
Phys Chem Chem Phys ; 25(12): 8734-8742, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36896849

ABSTRACT

Due to the existence of a small polaron, the intrinsic electronic conductivity of olivine-structured LiFePO4 is quite low, limiting its performance as a cathode material for lithium-ion batteries (LIBs). Previous studies have mainly focused on improving intrinsic conductivity through Fe-site doping while P-site or O-site doping has rarely been reported. Herein, we studied the formation and dynamics of the small electron polaron in FeP1-αXαO4 and FePO4-ßZß by employing the density functional theory with the on-site Hubbard correction terms (DFT+U) and Kinetic Monte Carlo (KMC) simulation, where X and Z indicate the doping elements (X = S, Se, As, Si, V; Z = S, F, Cl), and α and ß indicate the light doping at the P position (α = 0.0625) and O position (ß = 0.015625), respectively. We confirmed the small electron polaron formation in pristine FePO4 and its doped systems, and the polaron hopping rates for all systems were calculated according to the Marcus-Emin-Holstein-Austin-Mott (MEHAM) theory. We found that the hopping process is adiabatic for most cases with the defects breaking the original symmetry. Based on the KMC simulation results, we found that the doping of S at the P site changes the polaron's motion mode, which is expected to increase the mobility and intrinsic electronic conductivity. This study attempts to provide theoretical guidance to improve the electronic conductivity of LiFePO4-like cathode materials with better rate performance.

7.
Nanoscale ; 15(9): 4429-4437, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36751735

ABSTRACT

The two-dimensional (2D) basal plane of metal-phase molybdenum disulphide (1T-MoS2) provides a large area of active sites to significantly reduce the overpotential of the hydrogen evolution reaction (HER), but the long preparation period limits its industrial application. Here, 1T-MoS2 catalysts derived from molybdenum blue solution (MBS) were prepared in one step using a rapid high-pressure microwave (MW-MoS2) strategy. This method eliminated the thermodynamic process with a long time required for Mo-O trioxide bond breakage and reduction (MoVI → MoIV) of the conventional hydrothermal method. Additionally, the introduction of heteroatomic oxygen atoms effectively reduced the build-up of MW-MoS2 and improved the monolayer/few-layer state and stability. Impressively, MW-MoS2 has outstanding electrocatalytic performance, with a low overpotential (62 mV) at 10 mA cm-2 and a small Tafel slope (42 mV dec-1). This provides a simple strategy for the rapid preparation of a 2D sulphide HER catalyst with performance close to that of commercial Pt/C.

8.
Small ; 19(4): e2205736, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36420945

ABSTRACT

Metal phase molybdenum disulfide (1T-MoS2 ) is considered a promising electrocatalyst for hydrogen evolution reaction (HER) due to its activated basal and superior electrical conductivity. Here, a one-step solvothermal route is developed to prepare 1T-MoS2 with expanded layer spacing through the derivatization of a Mo-based organic framework (Mo-MOFs). Benefiting from N,N-dimethylformamide oxide as external stress, the interplanar spacing of (002) of the MoS2 catalyst is extended to 10.87 Å, which represents the largest one for the 1T-MoS2 catalyst prepared by the bottom-up approach. Theoretical calculations reveal that the expanded crystal planes alter the electronic structure of 1T-MoS2 , lower the adsorption-desorption potentials of protons, and thus, trigger efficient catalytic activity for HER. The optimal 1T-MoS2 catalyst exhibits an overpotential of 98 mV at 10 mA cm-2 for HER, corresponding to a Tafel slope of 52 mV dec-1 . This Mo-MOFs-derived strategy provides a potential way to design high-performance catalysts by adjusting the layer spacing of 2D materials.

9.
Small ; 19(3): e2205416, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36344460

ABSTRACT

Due to the rapid growth in the demand for high-energy-density Lithium (Li) batteries and insufficient global Li reserves, the anode-free Li metal batteries are receiving increasing attention. Various strategies, such as surface modification and structural design of copper (Cu) current collectors, have been proposed to stabilize the anode-free Li metal batteries. Unfortunately, the mechanism of Li deposition on the Cu surfaces with the different Miller indices is poorly understood, especially on the atomic scale. Here, the large-scale molecular dynamics simulations of Li deposition on the Cu substrates are performed in the anode-free Li metal batteries. The results show that the surface properties of the Li panel can be altered through the different Cu substrate surfaces. Through surface similarity analysis, potential energy distributions,and inhomogeneous deposition simulations, it is found that the Li atoms exhibit different potential energy variances and kinetic characteristics on the different Cu surfaces. Furthermore, a proposal to reduce the fraction of the (110) facet in commercial Cu foils is made to improve the reversibility and stability of Li plating/stripping in the anode-free Li metal batteries.

10.
Adv Sci (Weinh) ; 9(12): e2105574, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35212469

ABSTRACT

Li is an ideal anode material for use in state-of-the-art secondary batteries. However, Li-dendrite growth is a safety concern and results in low coulombic efficiency, which significantly restricts the commercial application of Li secondary batteries. Unfortunately, the Li-deposition (growth) mechanism is poorly understood on the atomic scale. Here, machine learning is used to construct a Li potential model with quantum-mechanical computational accuracy. Molecular dynamics simulations in this study with this model reveal two self-healing mechanisms in a large Li-metal system, viz. surface self-healing, and bulk self-healing. It is concluded that self-healing occurs rapidly in nanoscale; thus, minimizing the voids between the Li grains using several comprehensive methods can effectively facilitate the formation of dendrite-free Li.

11.
Small ; 17(47): e2102981, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34585828

ABSTRACT

The Ni-rich LiNi0.8 Co0.10 Mn0.1 O2 (NCM811) cathode coated by combining with multi-walled carbon nanotubes (MWCNTs) and polyimide (PI) produces a PI3-NCM811 cathode, which markedly improves cycling stability and suppresses secondary crystal cracking. The initial discharge capacity of the PI3-NCM811 cathode is 199.6 mAh g-1 between 2.8 and 4.3 V at 0.1 C @ 25 °C, which is slightly lower than that of NCM811 (201.1 mAh g-1 ). The PI3-NCM811 and NCM811 cathodes keep 90.6% and 64.8% of their initial discharge capacity at 1 C between 2.8 and 4.3 V after 500 cycles, respectively. Furthermore, the difference (21.1%) in capacity retention rate between PI3-NCM811 and NCM811 under the condition of 2.8-4.5 V became smaller compared with the difference (25.8%) under the condition of 2.8-4.3 V. This better cyclic stability is mainly attributed to the toughness and elasticity of PI, which inhibits the secondary cracking, maintains the structural integrity of the cathode particles, and protects the particles from electrolyte damage during long-term cycling.

12.
ACS Omega ; 6(22): 14639-14647, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34124487

ABSTRACT

Recently, synthesized Janus MoSSe monolayers have attracted tremendous attention in science and technology due to their novel properties and promising applications. In this work, we investigate their molecular adsorption-induced structural and electronic properties and tunable doping effects under biaxial strain and external electric field by first-principles calculations. We find an effective n-type or p-type doping in the MoSSe monolayer caused by noncovalent tetrathiafulvalene (TTF) or tetracyanoquinodimethane (TCNQ) molecular adsorption. Moreover, the concentration of doping carrier with respect to the S or Se side also exhibits Janus characteristics because of the electronegativity difference between S and Se atoms and the intrinsic dipole moment in the MoSSe monolayer. In particular, this n-type or p-type molecular doping effect can be flexibly tuned by biaxial strain or under external electric field. By analyzing the valence band maximum (VBM) and conduction band minimum (CBM) in the band structure of MoSSe/TTF under strain, the strain-tunable band gap of MoSSe and the n-type molecular doping effect is revealed. Further explanation of charge transfer between TTF or TCNQ and the MoSSe monolayer by an equivalent capacitor model shows that the superimposition of external electric field and molecular adsorption-induced internal electric field plays a crucial role in achieving a controllable doping concentration in the MoSSe monolayer.

13.
Phys Chem Chem Phys ; 23(5): 3588-3594, 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33522522

ABSTRACT

The thermodynamics of phosphorus (P) doping to spinel Co3O4, for both bulk cases and (100) and (110) surface cases, is studied using first principles calculations. The doping energies of the P atom at different doping sites are carefully calculated and compared. It is shown that P doping at Co sites, at either tetrahedral or octahedral sites, is energetically favorable, while P doping and replacing O atoms are energetically unfavorable. The doping energy difference is large enough to conclude that P doping has a very strong preference to take the Co sites, rather than the O sites in spinel Co3O4. Even when O-vacancy is available, P doping and taking the O-vacancy site is thermodynamically unfavorable. The physical/chemical mechanism behind this phenomenon is carefully analyzed. Electronic structure analysis shows that P doping and replacing the Co atom brings excess electrons to the Co3O4 system, which is beneficial to enhance the electrochemical and catalytic performance of the spinel Co3O4. Our results clarified the misleading results of P doping and replacing O atoms in spinel Co3O4 reported in the literature.

14.
Adv Sci (Weinh) ; 7(18): 2000749, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32999832

ABSTRACT

Silicone (Si) is one type of anode materials with intriguingly high theoretical capacity. However, the severe volume change associated with the repeated lithiation and delithiation processes hampers the mechanical/electrical integrity of Si anodes and hence reduces the battery's cycle-life. To address this issue, sequence-defined peptoids are designed and fabricated with two tailored functional groups, "-OH" and "-COOH", as cross-linkable polymeric binders for Si anodes of LIBs. Experimental results show that both the capacity and stability of such peptoids-bound Si anodes can be significantly improved due to the decreased cracks of Si nanoparticles. Particularly, the 15-mer peptoid binder in Si anode can result in a much higher reversible capacity (ca. 3110 mAh g-1) after 500 cycles at 1.0 A g-1 compared to other reported binders in literature. According to the density functional theory (DFT) calculations, it is the functional groups presented on the side chains of peptoids that facilitate the formation of Si-O binding efficiency and robustness, and then maintain the integrity of the Si anode. The sequence-designed polymers can act as a new platform for understanding the interactions between binders and Si anode materials, and promote the realization of high-performance batteries.

15.
Phys Chem Chem Phys ; 22(35): 19623-19630, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32856670

ABSTRACT

In this paper, H solution behaviors are systematically studied under varied external tensile/compressive strains in bcc W using first-principles calculations. The results show that the H solution energy is not only dependent on the ground state energy of the W lattice, but also strongly dependent on the entropy effect. The entropy effect includes not only the contribution from lattice vibrations, but also the configurational entropy of the H distribution in the interstitial sites. As the entropy effect is directly associated with the temperature, the H solubility in W is strongly dependent on the temperature and the magnitude of the H solubility is increased from 3 × 10-18 at 300 K to 1.1 × 10-3 at 1800 K under strain free conditions. The results also show that external strain can also play an important role in changing the H solution behavior in W. Tensile strain promotes the H solubility while compressive strain suppresses the solution of H.

16.
Adv Sci (Weinh) ; 7(13): 2000237, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32670761

ABSTRACT

Utilization of lithium (Li) metal anode in solid-state batteries (SSBs) with sulfide solid-state electrolyte (SSE) is hindered by the instable Li/SSE interface. A general solution to solve this problem is to place an expensive indium (In) foil between the SSE and Li, while it decreases the output voltage and thus the energy density of the battery. In this work, an alternative strategy is demonstrated to boost the cycling performances of SSB by wrapping a graphene oxide (GO) layer on the anode. According to density functional theory results, initial deposition of a thin Li layer on the defective GO sheets leads to the formation of a dipole structure, due to the electron-withdrawing ability of GO acting on Li. By incorporating GO sheets in a nanocomposite of copper-cuprous oxide-GO (Cu-Cu2O-GO, CCG), a composite Li anode enables a high coulombic efficiency above 99.5% over 120 cycles for an SSB using Li10GeP2S12 SSE and LiCoO2 cathode, and the sulfide SSE is not chemically decomposed after cycling. The highest occupied molecule orbital/lowest unoccupied molecular orbital energy gap of this Li/GO dipole structure likely stretches over those of Li and sulfide SSE, enabling stabilized Li/SSE interface that can replace the expensive In layer as Li protective structure in SSBs.

17.
ACS Appl Mater Interfaces ; 12(32): 36046-36053, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32672442

ABSTRACT

Coating with FePO4 with the size of 20-30 nm on the surface of a LiNi0.8Co0.10Mn0.1O2 (NCM811) cathode produces an LFP3@NCM811 cathode via a sol-gel method, which markedly reduces secondary crystal cracking. A stable particle structure greatly improves the cycling stability of the LFP3@NCM811cathode, which retains 97% of its initial discharge capacity compared to NCM811 (78%) after 100 cycles at 2.7-4.5 V. Furthermore, it retains 86 and 63% of its initial discharge capacity after 400 cycles for LFP3@NCM811 and NCM811, respectively. The initial discharge capacity of the LFP3@NCM811 cathode is 218.8 mAh g-1 at 0.1 C, and the discharge capacity of the LFP3@NCM811 cathode is achieved to be 151.4 mAh g-1 at 5 C, which is 15 mAh g-1 higher than that of the NCM811 cathode. These are due to the reduction of cation mixing for a certain amount of Fe2+/Fe3+ or PO43- doped into the NCM811 surface, and the yolk-shell structure formed by coating with FePO4 helps improve the electronic conductivity and accelerate the Li+ transport. The cycling stability is mainly due to the secondary cleavage inhibition, which maintains the structural integrity of the cathode particles during the long cycle process and protects the inside of the particle from harmful electrolytes.

18.
Phys Chem Chem Phys ; 22(25): 14216-14224, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32555834

ABSTRACT

Reducing charge overpotential is of great significance to enhance the efficiency and cyclability of Li-O2 batteries. Here, a dramatically reduced charge overpotential via boron-doped graphene as a catalytic substrate is successfully predicted. By first-principles calculations, from the perspective of reaction thermodynamics and kinetics, the results show that the electrochemical oxidation of the Li2O2+ cation is easier than the chemical oxidation of the neutral Li2O2 molecule, and the oxidation of (Li2O2)0,+ is facilitated by boron-doping in pristine graphene. More importantly, the results reveal the oxidation mechanism of (Li2O2)0,+: two-step dissociation with the LiO2 molecule as a reactive intermediate has advantages over one-step dissociation; the rate-determining step for the dissociation of (Li2O2+)G is the oxygen evolution process, while the lithium removal process is the rate-determining step for the dissociation of (Li2O20)G, (Li2O20)BG, and (Li2O2+)BG.

19.
Phys Chem Chem Phys ; 22(16): 8864-8869, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32285889

ABSTRACT

A first-principles calculation was performed to investigate the switchable CO2 capture on χ3-borophene by injecting/removing the extra electrons. The results show that the CO2 adsorption energy on the neutral χ3-borophene is 0.150 eV. After extra 2.5 e are injected, the adsorption energy is raised up to 0.802 eV, showing a significant enhancement with the change from the physical adsorption to chemical adsorption. Furthermore, both the CO2 capture and release processes are exothermic reactions involving injecting/removing extra electrons. χ3-borophene possesses a metallic electronic structure, which is conducive to the injection of extra electrons. The minimum charge density for CO2 capture on the negatively charged χ3-borophene is 1.6 × 1014 e cm-2. The CO2 capture capacity of χ3-borophene is 4.09 × 1014 cm-2. Finally, we study the selectivity of negatively charged χ3-borophene. The results show that the negatively-charged χ3-borophene possesses a high selectivity for CO2 from its mixtures with CO, CH4, NH3, N2, H2S, and H2. χ3-borophene is a new promising charge-modulated switchable CO2 capture material with good stability, high CO2 capture capacity, high selectivity, and excellent electrical conductivity.

20.
Phys Chem Chem Phys ; 22(6): 3281-3289, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-31970357

ABSTRACT

The pursuit of high capacity is one of the key challenges for the development of alkaline ion batteries (AIBs, namely Li/Na/K-ion batteries; LIBs, NIBs, or KIBs). Carbon-based anode materials represented by graphite have been widely used in secondary batteries; however, their storage capacity is generally not high. Graphene was once considered a promising candidate, but it has proven to be incapable of interacting strongly with alkali ions. Here, by first-principles calculations, we predict an allotrope of graphene that may soon be experimentally synthesized, called T-graphene, which is a promising anode material for AIBs. We find that when it is used as the anode for NIBs, its theoretical capacity can be as high as 2232 mA h g-1 (Na6C6), which is six times that of graphite. For LIB and KIB anodes, the specific capacities are 744 mA h g-1 and 1116 mA h g-1, corresponding to the Li2C6 and K3C6 chemical formula, respectively. We first demonstrate that the material is mechanically stable. We further show that the material has good electrical conductivity whether it is before or after adsorption of Li(Na or K). We also studied the diffusion of Li(Na or K) on its surface and found that their corresponding diffusion barriers are very low (Li, Na and K are about 0.37 eV, 0.35 eV and 0.25 eV, respectively), which means good rate performance. It is calculated that the average open circuit voltage of the corresponding three half-cells at full charge is also low (LIBs is about 0.20 V, NIBs is about 0.12 V, and KIBs are about 0.37 V), which is beneficial for increasing the operating voltage of the full battery. In addition, during the adsorption of lithium, sodium and potassium, the lattice change of the material is very small (about 1.0% for lithium, about 1.4% for sodium, and about 1.9% for potassium), which means good cycling performance. These results indicate that T-graphene is expected to replace graphene and become a very attractive anode material for AIBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...