Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
World Neurosurg ; 181: e1047-e1058, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37967740

ABSTRACT

OBJECTIVE: To compare the endoscopic transorbital approach (ETOA) and endoscopic endonasal approach (EEA) in terms of cavernous sinus (CS) exposure. METHODS: Four cadaveric heads (8 sides) were dissected. The CS was accessed using the EEA and ETOA. Stereotactic measurements of the length of the main structures exposed, angles of attack, depths of surgical corridor, and areas of exposure were obtained and compared between the approaches. An illustrative case is also presented. RESULTS: The endoscopic transorbital approach (ETOA) exposed the lateral and superior compartments of the CS without obstruction by the internal carotid artery (ICA). The EEA exposed all compartments after mobilizing the ICA. Both approaches enabled similar exposure of the cranial nerves. The depth of surgical corridor was significantly shorter with the ETOA (P < 0.01). The areas of lateral compartment exposure were similar. As the number of instruments placed into the surgical channel increased, the available angles of attack with the ETOA became smaller and were smaller than those of the EEA. In the clinical case presented, the tumor was successfully removed without complications. CONCLUSIONS: The ETOA has the advantages of a sterile surgical channel, short operation time, little patient trauma, short surgical corridor, large exposure area, and interdural pathway; moreover, it allows dissection through the interdural space without entering the neurovascular compartment of the CS. Although the space for manipulation of instruments is limited, the ETOA is suitable for treating selected tumors in the superior and lateral compartments of the CS.


Subject(s)
Cavernous Sinus , Humans , Cavernous Sinus/surgery , Endoscopy , Neurosurgical Procedures , Nose , Cranial Nerves , Cadaver
2.
Sci Rep ; 13(1): 22764, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38123650

ABSTRACT

Traumatic brain injury (TBI) is a common disease in neurosurgery with a high fatality and disability rate which imposes a huge burden on society and patient's family. Inhibition of neuroinflammation caused by microglia activation is a reasonable strategy to promote neurological recovery after TBI. Myricetin is a natural flavonoid that has shown good therapeutic effects in a variety of neurological disease models, but its therapeutic effect on TBI is not clear. We demonstrated that intraperitoneal injection of appropriate doses of myricetin significantly improved recovery of neurological function after TBI in Sprague Dawley rats and inhibited excessive inflammatory responses around the lesion site. Myricetin dramatically reduced the expression of toxic microglia markers generated by TBI and LPS, according to the outcomes of in vivo and in vitro tests. In particular, the expression of inducible nitric oxide synthase, cyclooxygenase 2, and some pro-inflammatory cytokines was reduced, which protected learning and memory functions in TBI rats. Through network pharmacological analysis, we found that myricetin may inhibit microglia hyperactivation through the EGFR-AKT/STAT pathway. These findings imply that myricetin is a promising treatment option for the management of neuroinflammation following TBI.


Subject(s)
Brain Injuries, Traumatic , Proto-Oncogene Proteins c-akt , Humans , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Neuroinflammatory Diseases , Microglia/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Flavonoids/metabolism , Brain Injuries, Traumatic/pathology , ErbB Receptors/metabolism , Disease Models, Animal
3.
ACS Nano ; 17(14): 13885-13902, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37399132

ABSTRACT

Glioblastoma (GBM) is one of the most challenging malignant brain tumors to treat. Herein, we describe a nanoenzyme hemostatic matrix strategy with the tumor cavity in situ application that simultaneously serves as photothermal agent and induces immunogenic cell death after GBM surgical resection to enhance the antitumor immunity and delay tumor recurrence. The hemostatic matrix system (Surgiflo@PCN) contains Surgiflo, a multispace structure that can be used to penetrate different shapes of tumor cavities to prevent postoperative tumor cavity hemorrhage. As well, porous palladium-copper nanoclusters (PCNs) have adjustable enzyme-like activities (oxidase, peroxidase, and catalase) responsible for formation of reactive oxygen species (ROS) under near-infrared (808 nm) laser irradiation. When the Surgiflo@PCN entered the resected tumor cavity, the first action was the direct killing of glioma cells via ROS and photothermal therapy (PTT). The second action was the induction of immunogenic cell death by PCN-enhanced oxidative stress and PTT, which reversed the immunosuppressive tumor microenvironment and enhanced the antitumor immune response. This eradicated residual glioma cells and prevented recurrence. The collective findings demonstrate that Surgiflo@PCN kills glioma cells directly through ROS and PTT and enhances antiglioma immunity and kills glioma cells indirectly. The "one-stone, two-birds" strategy could become an effective photothermal immunotherapy in GBM patients.


Subject(s)
Glioblastoma , Glioma , Hemostatics , Neoplasms , Humans , Reactive Oxygen Species , Glioma/drug therapy , Glioblastoma/drug therapy , Immunomodulation , Cell Line, Tumor , Tumor Microenvironment
4.
Adv Sci (Weinh) ; 10(12): e2206934, 2023 04.
Article in English | MEDLINE | ID: mdl-36808856

ABSTRACT

Chronic pain has attracted wide interest because it is a major obstacle affecting the quality of life. Consequently, safe, efficient, and low-addictive drugs are highly desirable. Nanoparticles (NPs) with robust anti-oxidative stress and anti-inflammatory properties possess therapeutic possibilities for inflammatory pain. Herein, a bioactive zeolitic imidazolate framework (ZIF)-8-capped superoxide dismutase (SOD) and Fe3 O4 NPs (SOD&Fe3 O4 @ZIF-8, SFZ) is developed to achieve enhanced catalytic, antioxidative activities, and inflammatory environment selectivity, ultimately improving analgesic efficacy. SFZ NPs reduce tert-butyl hydroperoxide (t-BOOH)-induced reactive oxygen species (ROS) overproduction, thereby depressing the oxidative stress and inhibiting the lipopolysaccharide (LPS)-induced inflammatory response in microglia. After intrathecal injection, SFZ NPs efficiently accumulate at the lumbar enlargement of the spinal cord and significantly relieve complete Freund's adjuvant (CFA)-induced inflammatory pain in mice. Moreover, the detailed mechanism of inflammatory pain therapy via SFZ NPs is further studied, where SFZ NPs inhibit the activation of the mitogen-activated protein kinase (MAPK)/p-65 signaling pathway, leading to reductions in phosphorylated protein levels (p-65, p-ERK, p-JNK, and p-p38) and inflammatory factors (tumor necrosis factor [TNF]-α, interleukin [IL]-6, and IL-1ß), thereby preventing microglia and astrocyte activation for acesodyne. This study provides a new cascade nanoenzyme for antioxidant treatments and explores its potential applications as non-opioid analgesics.


Subject(s)
Antioxidants , Mitogen-Activated Protein Kinases , Mice , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Mitogen-Activated Protein Kinases/metabolism , Quality of Life , Pain/drug therapy , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...