Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Acta Pharm Sin B ; 13(10): 4172-4184, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37799377

ABSTRACT

The lysosome is responsible for protein and organelle degradation and homeostasis and the cathepsins play a key role in maintaining protein quality control. Cathepsin D (CTSD), is one such lysosomal protease, which when deficient in humans lead to neurolipofuscinosis (NCL) and is important in removing toxic protein aggregates. Prior studies demonstrated that CTSD germ-line knockout-CtsdKO (CDKO) resulted in accumulation of protein aggregates, decreased proteasomal activities, and postnatal lethality on Day 26 ± 1. Overexpression of wildtype CTSD, but not cathepsin B, L or mutant CTSD, decreased α-synuclein toxicity in worms and mammalian cells. In this study we generated a mouse line expressing human CTSD with a floxed STOP cassette between the ubiquitous CAG promoter and the cDNA. After crossing with Nestin-cre, the STOP cassette is deleted in NESTIN + cells to allow CTSD overexpression-CTSDtg (CDtg). The CDtg mice exhibited normal behavior and similar sensitivity to sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced neurodegeneration. By breeding CDtg mice with CDKO mice, we found that over-expression of CTSD extended the lifespan of the CDKO mice, partially rescued proteasomal deficits and the accumulation of Aß42 in the CDKO. This new transgenic mouse provides supports for the key role of CTSD in protecting against proteotoxicity and offers a new model to study the role of CTSD enhancement in vivo.

2.
J Neurochem ; 165(5): 682-700, 2023 06.
Article in English | MEDLINE | ID: mdl-37129420

ABSTRACT

Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA), which removes the O-GlcNAc modification from proteins, has been explored in mouse models of amyloid-beta and tau pathology. However, the O-GlcNAcylation-dependent link between gene expression and neurological behavior remains to be explored. Using chronic administration of Thiamet G (TG, an OGA inhibitor) in vivo, we used a protocol designed to relate behavior with the transcriptome and selected biochemical parameters from the cortex of individual animals. TG-treated mice showed improved working memory as measured using a Y-maze test. RNA sequencing analysis revealed 151 top differentially expressed genes with a Log2fold change >0.33 and adjusted p-value <0.05. Top TG-dependent upregulated genes were related to learning, cognition and behavior, while top downregulated genes were related to IL-17 signaling, inflammatory response and chemotaxis. Additional pathway analysis uncovered 3 pathways, involving gene expression including 14 cytochrome c oxidase subunits/regulatory components, chaperones or assembly factors, and 5 mTOR (mechanistic target of rapamycin) signaling factors. Multivariate Kendall correlation analyses of behavioral tests and the top TG-dependent differentially expressed genes revealed 91 statistically significant correlations in saline-treated mice and 70 statistically significant correlations in TG-treated mice. These analyses provide a network regulation landscape that is important in relating the transcriptome to behavior and the potential impact of the O-GlcNAC pathway.


Subject(s)
Protein Processing, Post-Translational , Signal Transduction , Mice , Animals , Disease Models, Animal , Sirolimus , Gene Expression
3.
Physiol Rep ; 11(9): e15686, 2023 05.
Article in English | MEDLINE | ID: mdl-37144628

ABSTRACT

Autophagy is important for protein and organelle quality control. Growing evidence demonstrates that autophagy is tightly controlled by transcriptional mechanisms, including repression by zinc finger containing KRAB and SCAN domains 3 (ZKSCAN3). We hypothesize that cardiomyocyte-specific ZKSCAN3 knockout (Z3K) disrupts autophagy activation and repression balance and exacerbates cardiac pressure-overload-induced remodeling following transverse aortic constriction (TAC). Indeed, Z3K mice had an enhanced mortality compared to control (Con) mice following TAC. Z3K-TAC mice that survived exhibited a lower body weight compared to Z3K-Sham. Although both Con and Z3K mice exhibited cardiac hypertrophy after TAC, Z3K mice exhibited TAC-induced increase of left ventricular posterior wall thickness at end diastole (LVPWd). Conversely, Con-TAC mice exhibited decreases in PWT%, fractional shortening (FS%), and ejection fraction (EF%). Autophagy genes (Tfeb, Lc3b, and Ctsd) were decreased by the loss of ZKSCAN3. TAC suppressed Zkscan3, Tfeb, Lc3b, and Ctsd in Con mice, but not in Z3K. The Myh6/Myh7 ratio, which is related to cardiac remodeling, was decreased by the loss of ZKSCAN3. Although Ppargc1a mRNA and citrate synthase activities were decreased by TAC in both genotypes, mitochondrial electron transport chain activity did not change. Bi-variant analyses show that while in Con-Sham, the levels of autophagy and cardiac remodeling mRNAs form a strong correlation network, such was disrupted in Con-TAC, Z3K-Sham, and Z3K-TAC. Ppargc1a also forms different links in Con-sham, Con-TAC, Z3K-Sham, and Z3K-TAC. We conclude that ZKSCAN3 in cardiomyocytes reprograms autophagy and cardiac remodeling gene transcription, and their relationships with mitochondrial activities in response to TAC-induced pressure overload.


Subject(s)
Aortic Valve Stenosis , Myocytes, Cardiac , Mice , Animals , Myocytes, Cardiac/metabolism , Ventricular Remodeling , Cardiomegaly/metabolism , Heart Ventricles/metabolism , Proteins , Mice, Knockout , Mice, Inbred C57BL , Transcription Factors/genetics
4.
J Immunol ; 209(5): 896-906, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35914835

ABSTRACT

Protein kinase CK2 is a serine/threonine kinase composed of two catalytic subunits (CK2α and/or CK2α') and two regulatory subunits (CK2ß). CK2 promotes cancer progression by activating the NF-κB, PI3K/AKT/mTOR, and JAK/STAT pathways, and also is critical for immune cell development and function. The potential involvement of CK2 in CD8+ T cell function has not been explored. We demonstrate that CK2 protein levels and kinase activity are enhanced upon mouse CD8+ T cell activation. CK2α deficiency results in impaired CD8+ T cell activation and proliferation upon TCR stimulation. Furthermore, CK2α is involved in CD8+ T cell metabolic reprogramming through regulating the AKT/mTOR pathway. Lastly, using a mouse Listeria monocytogenes infection model, we demonstrate that CK2α is required for CD8+ T cell expansion, maintenance, and effector function in both primary and memory immune responses. Collectively, our study implicates CK2α as an important regulator of mouse CD8+ T cell activation, metabolic reprogramming, and differentiation both in vitro and in vivo.


Subject(s)
Casein Kinase II , NF-kappa B , CD8-Positive T-Lymphocytes/metabolism , Casein Kinase II/metabolism , Phosphatidylinositol 3-Kinases , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-akt , Receptors, Antigen, T-Cell , Serine , T-Lymphocytes/metabolism , TOR Serine-Threonine Kinases
5.
Mol Brain ; 15(1): 22, 2022 03 05.
Article in English | MEDLINE | ID: mdl-35248135

ABSTRACT

The accumulation of neurotoxic proteins characteristic of age-related neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases is associated with the perturbation of metabolism, bioenergetics, and mitochondrial quality control. One approach to exploit these interactions therapeutically is to target the pathways that regulate metabolism. In this respect, the nutrient-sensing hexosamine biosynthesis pathway is of particular interest since it introduces a protein post-translational modification known as O-GlcNAcylation, which modifies different proteins in control versus neurodegenerative disease postmortem brains. A potent inhibitor of the O-GlcNAcase enzyme that removes the modification from proteins, Thiamet G (TG), has been proposed to have potential benefits in Alzheimer's disease. We tested whether key factors in the O-GlcNAcylation are correlated with mitochondrial electron transport and proteins related to the autophagy/lysosomal pathways in the cortex of male and female mice with and without exposure to TG (10 mg/kg i.p.). Mitochondrial complex activities were measured in the protein homogenates, and a panel of metabolic, autophagy/lysosomal proteins and O-GlcNAcylation enzymes were assessed by either enzyme activity assay or by western blot analysis. We found that the networks associated with O-GlcNAcylation enzymes and activities with mitochondrial parameters, autophagy-related proteins as well as neurodegenerative disease-related proteins exhibited sex and TG dependent differences. Taken together, these studies provide a framework of interconnectivity for multiple O-GlcNAc-dependent pathways in mouse brain of relevance to aging and sex/age-dependent neurodegenerative pathogenesis and response to potential therapies.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Alzheimer Disease/metabolism , Animals , Autophagy , Energy Metabolism , Female , Male , Mice , Protein Processing, Post-Translational
6.
Lab Invest ; 101(11): 1467-1474, 2021 11.
Article in English | MEDLINE | ID: mdl-34504306

ABSTRACT

The mortality rates among patients who initially survive sepsis are, in part, associated with a high risk of secondary lung infections and respiratory failure. Given that phagolysosomes are important for intracellular killing of pathogenic microbes, we investigated how severe lung infections associated with post-sepsis immunosuppression affect phagolysosome biogenesis. In mice with P. aeruginosa-induced pneumonia, we found a depletion of both phagosomes and lysosomes, as evidenced by decreased amounts of microtubule associated protein light chain 3-II (LC3-II) and lysosomal-associated membrane protein (LAMP1). We also found a loss of transcription factor E3 (TFE3) and transcription factor EB (TFEB), which are important activators for transcription of genes encoding autophagy and lysosomal proteins. These events were associated with increased expression of ZKSCAN3, a repressor for transcription of genes encoding autophagy and lysosomal proteins. Zkscan3-/- mice had increased expression of genes involved in the autophagy-lysosomal pathway along with enhanced killing of P. aeruginosa in the lungs, as compared to wild-type mice. These findings highlight the involvement of ZKSCAN3 in response to severe lung infection, including susceptibility to secondary bacterial infections due to immunosuppression.


Subject(s)
Phagosomes/physiology , Pneumonia, Bacterial/complications , Pseudomonas Infections/complications , Sepsis/immunology , Transcription Factors/deficiency , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Immune Tolerance , Lung/metabolism , Male , Mice, Inbred C57BL , Pneumonia, Bacterial/metabolism , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa , Sepsis/microbiology
7.
Front Aging ; 2: 757801, 2021.
Article in English | MEDLINE | ID: mdl-35822049

ABSTRACT

O-linked conjugation of ß-N-acetyl-glucosamine (O-GlcNAc) to serine and threonine residues is a post-translational modification process that senses nutrient availability and cellular stress and regulates diverse biological processes that are involved in neurodegenerative diseases and provide potential targets for therapeutics development. However, very little is known of the networks involved in the brain that are responsive to changes in the O-GlcNAc proteome. Pharmacological increase of protein O-GlcNAcylation by Thiamet G (TG) has been shown to decrease tau phosphorylation and neurotoxicity, and proposed as a therapy in Alzheimer's disease (AD). However, acute TG exposure impairs learning and memory, and protein O-GlcNAcylation is increased in the aging rat brain and in Parkinson's disease (PD) brains. To define the cortical O-GlcNAc proteome that responds to TG, we injected young adult mice with either saline or TG and performed mass spectrometry analysis for detection of O-GlcNAcylated peptides. This approach identified 506 unique peptides corresponding to 278 proteins that are O-GlcNAcylated. Of the 506 unique peptides, 85 peptides are elevated by > 1.5 fold in O-GlcNAcylation levels in response to TG. Using pathway analyses, we found TG-dependent enrichment of O-GlcNAcylated synaptic proteins, trafficking, Notch/Wnt signaling, HDAC signaling, and circadian clock proteins. Significant changes in the O-GlcNAcylation of DNAJC6/AUXI, and PICALM, proteins that are risk factors for PD and/or AD respectively, were detected. We compared our study with two key prior O-GlcNAc proteome studies using mouse cerebral tissue and human AD brains. Among those identified to be increased by TG, 15 are also identified to be increased in human AD brains compared to control, including those involved in cytoskeleton, autophagy, chromatin organization and mitochondrial dysfunction. These studies provide insights regarding neurodegenerative diseases therapeutic targets.

8.
Dis Model Mech ; 13(7)2020 07 27.
Article in English | MEDLINE | ID: mdl-32586831

ABSTRACT

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin (FXN). Most FRDA patients are homozygous for large expansions of GAA repeat sequences in intron 1 of FXN, whereas a fraction of patients are compound heterozygotes, with a missense or nonsense mutation in one FXN allele and expanded GAAs in the other. A prevalent missense mutation among FRDA patients changes a glycine at position 130 to valine (G130V). Herein, we report generation of the first mouse model harboring an Fxn point mutation. Changing the evolutionarily conserved glycine 127 in mouse Fxn to valine results in a failure-to-thrive phenotype in homozygous animals and a substantially reduced number of offspring. Like G130V in FRDA, the G127V mutation results in a dramatic decrease of Fxn protein without affecting transcript synthesis or splicing. FxnG127V mouse embryonic fibroblasts exhibit significantly reduced proliferation and increased cell senescence. These defects are evident in early passage cells and are exacerbated at later passages. Furthermore, increased frequency of mitochondrial DNA lesions and fragmentation are accompanied by marked amplification of mitochondrial DNA in FxnG127V cells. Bioenergetics analyses demonstrate higher sensitivity and reduced cellular respiration of FxnG127V cells upon alteration of fatty acid availability. Importantly, substitution of FxnWT with FxnG127V is compatible with life, and cellular proliferation defects can be rescued by mitigation of oxidative stress via hypoxia or induction of the NRF2 pathway. We propose FxnG127V cells as a simple and robust model for testing therapeutic approaches for FRDA.


Subject(s)
Cell Proliferation , Cellular Senescence , Fibroblasts/pathology , Friedreich Ataxia/genetics , Iron-Binding Proteins/genetics , Mitochondria/pathology , Point Mutation , Animals , Cell Line , Disease Models, Animal , Energy Metabolism , Fatty Acids/metabolism , Fibroblasts/metabolism , Friedreich Ataxia/metabolism , Friedreich Ataxia/pathology , Genetic Predisposition to Disease , Iron-Binding Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/genetics , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Phenotype , Frataxin
9.
Lab Invest ; 100(9): 1238-1251, 2020 09.
Article in English | MEDLINE | ID: mdl-32350405

ABSTRACT

The mechanisms which underlie defects in learning and memory are a major area of focus with the increasing incidence of Alzheimer's disease in the aging population. The complex genetically-controlled, age-, and environmentally-dependent onset and progression of the cognitive deficits and neuronal pathology call for better understanding of the fundamental biology of the nervous system function. In this study, we focus on nuclear receptor binding factor-2 (NRBF2) which modulates the transcriptional activities of retinoic acid receptor α and retinoid X receptor α, and the autophagic activities of the BECN1-VPS34 complex. Since both transcriptional regulation and autophagic function are important in supporting neuronal function, we hypothesized that NRBF2 deficiency may lead to cognitive deficits. To test this, we developed a new mouse model with nervous system-specific knockout of Nrbf2. In a series of behavioral assessment, we demonstrate that NRBF2 knockout in the nervous system results in profound learning and memory deficits. Interestingly, we did not find deficits in autophagic flux in primary neurons and the autophagy deficits were minimal in the brain. In contrast, RNAseq analyses have identified altered expression of genes that have been shown to impact neuronal function. The observation that NRBF2 is involved in learning and memory suggests a new mechanism regulating cognition involving the role of this protein in regulating networks related to the function of retinoic acid receptors, protein folding, and quality control.


Subject(s)
Autophagy-Related Proteins/genetics , Brain/metabolism , Learning/physiology , Memory/physiology , Organ Specificity/genetics , Trans-Activators/genetics , Animals , Autophagy-Related Proteins/metabolism , Cells, Cultured , Gene Expression Regulation , Learning Disabilities/genetics , Learning Disabilities/physiopathology , Male , Maze Learning/physiology , Memory Disorders/genetics , Memory Disorders/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Motor Activity/genetics , Motor Activity/physiology , Neurons/cytology , Neurons/metabolism , Trans-Activators/metabolism
10.
Front Aging ; 1: 620382, 2020.
Article in English | MEDLINE | ID: mdl-35822169

ABSTRACT

O-GlcNAcylation is a protein posttranslational modification that results in the addition of O-GlcNAc to Ser/Thr residues. Since its discovery in the 1980s, it has been shown to play an important role in a broad range of cellular functions by modifying nuclear, cytosolic, and mitochondrial proteins. The addition of O-GlcNAc is catalyzed by O-GlcNAc transferase (OGT), and its removal is catalyzed by O-GlcNAcase (OGA). Levels of protein O-GlcNAcylation change in response to nutrient availability and metabolic, oxidative, and proteotoxic stress. OGT and OGA levels, activity, and target engagement are also regulated. Together, this results in adaptive and, on occasions, detrimental responses that affect cellular function and survival, which impact a broad range of pathologies and aging. Over the past several decades, approaches and tools to aid the investigation of the regulation and consequences of protein O-GlcNAcylation have been developed and enhanced. This review is divided into two sections: 1) We will first focus on current standard and advanced technical approaches for assessing enzymatic activities of OGT and OGT, assessing the global and specific protein O-GlcNAcylation and 2) we will summarize in vivo findings of functional consequences of changing protein O-GlcNAcylation, using genetic and pharmacological approaches.

11.
Am J Physiol Cell Physiol ; 316(6): C862-C875, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30865517

ABSTRACT

The attachment of O-linked ß-N-acetylglucosamine (O-GlcNAc) to the serine and threonine residues of proteins in distinct cellular compartments is increasingly recognized as an important mechanism regulating cellular function. Importantly, the O-GlcNAc modification of mitochondrial proteins has been identified as a potential mechanism to modulate metabolism under stress with both potentially beneficial and detrimental effects. This suggests that temporal and dose-dependent changes in O-GlcNAcylation may have different effects on mitochondrial function. In the current study, we found that acutely augmenting O-GlcNAc levels by inhibiting O-GlcNAcase with Thiamet-G for up to 6 h resulted in a time-dependent decrease in cellular bioenergetics and decreased mitochondrial complex I, II, and IV activities. Under these conditions, mitochondrial number was unchanged, whereas an increase in the protein levels of the subunits of several electron transport complex proteins was observed. However, the observed bioenergetic changes appeared not to be due to direct increased O-GlcNAc modification of complex subunit proteins. Increases in O-GlcNAc were also associated with an accumulation of mitochondrial ubiquitinated proteins; phosphatase and tensin homolog induced kinase 1 (PINK1) and p62 protein levels were also significantly increased. Interestingly, the increase in O-GlcNAc levels was associated with a decrease in the protein levels of the mitochondrial Lon protease homolog 1 (LonP1), which is known to target complex IV subunits and PINK1, in addition to other mitochondrial proteins. These data suggest that impaired bioenergetics associated with short-term increases in O-GlcNAc levels could be due to impaired, LonP1-dependent, mitochondrial complex protein turnover.


Subject(s)
ATP-Dependent Proteases/metabolism , Acetylglucosamine/metabolism , Down-Regulation/physiology , Energy Metabolism/physiology , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , beta-N-Acetylhexosaminidases/metabolism , ATP-Dependent Proteases/antagonists & inhibitors , Cell Line , Dose-Response Relationship, Drug , Humans , Mitochondrial Proteins/antagonists & inhibitors
12.
Redox Biol ; 18: 54-64, 2018 09.
Article in English | MEDLINE | ID: mdl-29986209

ABSTRACT

Chronic inflammation involving both innate and adaptive immune cells is implicated in the pathogenesis of asthma. Intercellular communication is essential for driving and resolving inflammatory responses in asthma. Emerging studies suggest that extracellular vesicles (EVs) including exosomes facilitate this process. In this report, we have used a range of approaches to show that EVs contain markers of mitochondria derived from donor cells which are capable of sustaining a membrane potential. Further, we propose that these participate in intercellular communication within the airways of human subjects with asthma. Bronchoalveolar lavage fluid of both healthy volunteers and asthmatics contain EVs with encapsulated mitochondria; however, the % HLA-DR+ EVs containing mitochondria and the levels of mitochondrial DNA within EVs were significantly higher in asthmatics. Furthermore, mitochondria are present in exosomes derived from the pro-inflammatory HLA-DR+ subsets of airway myeloid-derived regulatory cells (MDRCs), which are known regulators of T cell responses in asthma. Exosomes tagged with MitoTracker Green, or derived from MDRCs transduced with CellLight Mitochondrial GFP were found in recipient peripheral T cells using a co-culture system, supporting direct exosome-mediated cell-cell transfer. Importantly, exosomally transferred mitochondria co-localize with the mitochondrial network and generate reactive oxygen species within recipient T cells. These findings support a potential novel mechanism of cell-cell communication involving exosomal transfer of mitochondria and the bioenergetic and/or redox regulation of target cells.


Subject(s)
Asthma/pathology , Exosomes/pathology , Mitochondria/pathology , Myeloid Cells/pathology , Cell Communication , DNA, Mitochondrial/analysis , HLA-DR Antigens/analysis , Humans , Oxidation-Reduction , Reactive Oxygen Species/analysis
13.
Redox Biol ; 17: 59-69, 2018 07.
Article in English | MEDLINE | ID: mdl-29677567

ABSTRACT

Mitochondrial quality is under surveillance by autophagy, the cell recycling process which degrades and removes damaged mitochondria. Inadequate autophagy results in deterioration in mitochondrial quality, bioenergetic dysfunction, and metabolic stress. Here we describe in an integrated work-flow to assess parameters of mitochondrial morphology, function, mtDNA and protein damage, metabolism and autophagy regulation to provide the framework for a practical assessment of mitochondrial quality. This protocol has been tested with cell cultures, is highly reproducible, and is adaptable to studies when cell numbers are limited, and thus will be of interest to researchers studying diverse physiological and pathological phenomena in which decreased mitochondrial quality is a contributory factor.


Subject(s)
DNA, Mitochondrial/metabolism , Energy Metabolism/genetics , Mitochondria/metabolism , Mitophagy/genetics , Animals , Autophagy/genetics , Brain/metabolism , Cell Culture Techniques , Humans , Mice , Mitochondria/genetics , Neurons/metabolism , Quality Control , Rats
14.
Neurobiol Dis ; 110: 68-81, 2018 02.
Article in English | MEDLINE | ID: mdl-29196214

ABSTRACT

The aberrant accumulation of alpha-synuclein (α-syn) is believed to contribute to the onset and pathogenesis of Parkinson's disease (PD). The autophagy-lysosome pathway (ALP) is responsible for the high capacity clearance of α-syn. ALP dysfunction is documented in PD and pre-clinical evidence suggests that inhibiting the ALP promotes the pathological accumulation of α-syn. We previously identified the pathological accumulation of α-syn in the brains of mice deficient for the soluble lysosomal enzyme alpha-Galactosidase A (α-Gal A), a member of the glycosphingolipid metabolism pathway. In the present study, we quantified α-Gal A activity and levels of its glycosphingolipid metabolites in postmortem temporal cortex specimens from control individuals and in PD individuals staged with respect to α-syn containing Lewy body pathology. In late-state PD temporal cortex we observed significant decreases in α-Gal A activity and the 46kDa "active" species of α-Gal A as determined respectively by fluorometric activity assay and western blot analysis. These decreases in α-Gal A activity/levels correlated significantly with increased α-syn phosphorylated at serine 129 (p129S-α-syn) that was maximal in late-stage PD temporal cortex. Mass spectrometric analysis of 29 different isoforms of globotriaosylceramide (Gb3), a substrate of α-Gal A indicated no significant differences with respect to different stages of PD temporal cortex. However, significant correlations were observed between increased levels of several Gb3 isoforms and with decreased α-Gal A activity and/or increased p129S-α-syn. Deacylated Gb3 (globotriaosylsphingosine or lyso-Gb3) was also analyzed in PD brain tissue but was below the limit of detection of 20pmol/g. Analysis of other lysosomal enzymes revealed a significant decrease in activity for the lysosomal aspartic acid protease cathepsin D but not for glucocerebrosidase (GCase) or cathepsin B in late-stage PD temporal cortex. However, a significant correlation was observed between decreasing GCase activity and increasing p129S-α-syn. Together our findings indicate α-Gal A deficiency in late-stage PD brain that correlates significantly with the pathological accumulation of α-syn, and further suggest the potential for α-Gal A and its glycosphingolipid substrates as putative biomarkers for PD.


Subject(s)
Parkinson Disease/enzymology , Parkinson Disease/pathology , Temporal Lobe/enzymology , Temporal Lobe/pathology , alpha-Galactosidase/metabolism , Aged , Aged, 80 and over , Female , Humans , Male , Trihexosylceramides/metabolism , alpha-Synuclein/metabolism
15.
Autophagy ; 13(11): 1828-1840, 2017.
Article in English | MEDLINE | ID: mdl-28837411

ABSTRACT

The production of reactive species contributes to the age-dependent accumulation of dysfunctional mitochondria and protein aggregates, all of which are associated with neurodegeneration. A putative mediator of these effects is the lipid peroxidation product 4-hydroxynonenal (4-HNE), which has been shown to inhibit mitochondrial function, and accumulate in the postmortem brains of patients with neurodegenerative diseases. This deterioration in mitochondrial quality could be due to direct effects on mitochondrial proteins, or through perturbation of the macroautophagy/autophagy pathway, which plays an essential role in removing damaged mitochondria. Here, we use a click chemistry-based approach to demonstrate that alkyne-4-HNE can adduct to specific mitochondrial and autophagy-related proteins. Furthermore, we found that at lower concentrations (5-10 µM), 4-HNE activates autophagy, whereas at higher concentrations (15 µM), autophagic flux is inhibited, correlating with the modification of key autophagy proteins at higher concentrations of alkyne-4-HNE. Increasing concentrations of 4-HNE also cause mitochondrial dysfunction by targeting complex V (the ATP synthase) in the electron transport chain, and induce significant changes in mitochondrial fission and fusion protein levels, which results in alterations to mitochondrial network length. Finally, inhibition of autophagy initiation using 3-methyladenine (3MA) also results in a significant decrease in mitochondrial function and network length. These data show that both the mitochondria and autophagy are critical targets of 4-HNE, and that the proteins targeted by 4-HNE may change based on its concentration, persistently driving cellular dysfunction.


Subject(s)
Aldehydes/metabolism , Autophagy/physiology , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Neurons/physiology , Oxidative Stress , Adenine/analogs & derivatives , Adenine/pharmacology , Aldehydes/analysis , Aldehydes/pharmacology , Animals , Autophagy/drug effects , Cells, Cultured , Energy Metabolism , Mitochondrial Dynamics , Neurons/cytology , Neurons/drug effects , Primary Cell Culture , Rats
16.
Mol Brain ; 10(1): 32, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28724388

ABSTRACT

Post-translational modification on protein Ser/Thr residues by O-linked attachment of ß-N-acetyl-glucosamine (O-GlcNAcylation) is a key mechanism integrating redox signaling, metabolism and stress responses. One of the most common neurodegenerative diseases that exhibit aberrant redox signaling, metabolism and stress response is Parkinson's disease, suggesting a potential role for O-GlcNAcylation in its pathology. To determine whether abnormal O-GlcNAcylation occurs in Parkinson's disease, we analyzed lysates from the postmortem temporal cortex of Parkinson's disease patients and compared them to age matched controls and found increased protein O-GlcNAcylation levels. To determine whether increased O-GlcNAcylation affects neuronal function and survival, we exposed rat primary cortical neurons to thiamet G, a highly selective inhibitor of the enzyme which removes the O-GlcNAc modification from target proteins, O-GlcNAcase (OGA). We found that inhibition of OGA by thiamet G at nanomolar concentrations significantly increased protein O-GlcNAcylation, activated MTOR, decreased autophagic flux, and increased α-synuclein accumulation, while sparing proteasomal activities. Inhibition of MTOR by rapamycin decreased basal levels of protein O-GlcNAcylation, decreased AKT activation and partially reversed the effect of thiamet G on α-synuclein monomer accumulation. Taken together we have provided evidence that excessive O-GlcNAcylation is detrimental to neurons by inhibition of autophagy and by increasing α-synuclein accumulation.


Subject(s)
Autophagy , Glucosamine/metabolism , Homeostasis , Parkinson Disease/metabolism , Parkinson Disease/pathology , alpha-Synuclein/metabolism , Animals , Autophagy/drug effects , Cells, Cultured , Glycosylation/drug effects , Humans , Models, Biological , Neurons/drug effects , Neurons/metabolism , Phosphorylation/drug effects , Postmortem Changes , Proto-Oncogene Proteins c-akt/metabolism , Pyrans/pharmacology , Rats, Sprague-Dawley , Signal Transduction/drug effects , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Thiazoles/pharmacology
17.
Redox Biol ; 11: 73-81, 2017 04.
Article in English | MEDLINE | ID: mdl-27889640

ABSTRACT

Autophagy is an important cell recycling program responsible for the clearance of damaged or long-lived proteins and organelles. Pharmacological modulators of this pathway have been extensively utilized in a wide range of basic research and pre-clinical studies. Bafilomycin A1 and chloroquine are commonly used compounds that inhibit autophagy by targeting the lysosomes but through distinct mechanisms. Since it is now clear that mitochondrial quality control, particularly in neurons, is dependent on autophagy, it is important to determine whether these compounds modify cellular bioenergetics. To address this, we cultured primary rat cortical neurons from E18 embryos and used the Seahorse XF96 analyzer and a targeted metabolomics approach to measure the effects of bafilomycin A1 and chloroquine on bioenergetics and metabolism. We found that both bafilomycin and chloroquine could significantly increase the autophagosome marker LC3-II and inhibit key parameters of mitochondrial function, and increase mtDNA damage. Furthermore, we observed significant alterations in TCA cycle intermediates, particularly those downstream of citrate synthase and those linked to glutaminolysis. Taken together, these data demonstrate a significant impact of bafilomycin and chloroquine on cellular bioenergetics and metabolism consistent with decreased mitochondrial quality associated with inhibition of autophagy.


Subject(s)
Autophagy/genetics , Microtubule-Associated Proteins/genetics , Mitochondria/metabolism , Neurons/metabolism , Animals , Chloroquine/pharmacology , DNA Damage/drug effects , DNA, Mitochondrial/drug effects , Energy Metabolism/genetics , Lysosomes/drug effects , Lysosomes/genetics , Macrolides/pharmacology , Metabolomics/methods , Microtubule-Associated Proteins/metabolism , Neurons/drug effects , Rats
18.
J Neurochem ; 131(5): 625-33, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25081478

ABSTRACT

Parkinson's disease is the second most common neurodegenerative disorder with both mitochondrial dysfunction and insufficient autophagy playing a key role in its pathogenesis. Among the risk factors, exposure to the environmental neurotoxin rotenone increases the probability of developing Parkinson's disease. We previously reported that in differentiated SH-SY5Y cells, rotenone-induced cell death is directly related to inhibition of mitochondrial function. How rotenone at nM concentrations inhibits mitochondrial function, and whether it can engage the autophagy pathway necessary to remove damaged proteins and organelles, is unknown. We tested the hypothesis that autophagy plays a protective role against rotenone toxicity in primary neurons. We found that rotenone (10-100 nM) immediately inhibited cellular bioenergetics. Concentrations that decreased mitochondrial function at 2 h, caused cell death at 24 h with an LD50 of 10 nM. Overall, autophagic flux was decreased by 10 nM rotenone at both 2 and 24 h, but surprisingly mitophagy, or autophagy of the mitochondria, was increased at 24 h, suggesting that a mitochondrial-specific lysosomal degradation pathway may be activated. Up-regulation of autophagy by rapamycin protected against cell death while inhibition of autophagy by 3-methyladenine exacerbated cell death. Interestingly, while 3-methyladenine exacerbated the rotenone-dependent effects on bioenergetics, rapamycin did not prevent rotenone-induced mitochondrial dysfunction, but caused reprogramming of mitochondrial substrate usage associated with both complex I and complex II activities. Taken together, these data demonstrate that autophagy can play a protective role in primary neuron survival in response to rotenone; moreover, surviving neurons exhibit bioenergetic adaptations to this metabolic stressor.


Subject(s)
Autophagy/drug effects , Energy Metabolism/drug effects , Insecticides/pharmacology , Rotenone/pharmacology , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Cell Survival/drug effects , Cells, Cultured , Cerebral Cortex/cytology , DNA Damage/drug effects , DNA, Mitochondrial/antagonists & inhibitors , DNA, Mitochondrial/genetics , Dose-Response Relationship, Drug , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Lactosylceramides/pharmacology , Neurons/drug effects , Oligomycins/pharmacology , Oxygen Consumption/drug effects , Rats , Sirolimus/pharmacology
19.
Autophagy ; 10(6): 986-1003, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24879149

ABSTRACT

GABARAPL1/GEC1 is an early estrogen-induced gene which encodes a protein highly conserved from C. elegans to humans. Overexpressed GABARAPL1 interacts with GABAA or kappa opioid receptors, associates with autophagic vesicles, and inhibits breast cancer cell proliferation. However, the function of endogenous GABARAPL1 has not been extensively studied. We hypothesized that GABARAPL1 is required for maintaining normal autophagic flux, and plays an important role in regulating cellular bioenergetics and metabolism. To test this hypothesis, we knocked down GABARAPL1 expression in the breast cancer MDA-MB-436 cell line by shRNA. Decreased expression of GABARAPL1 activated procancer responses of the MDA-MB-436 cells including increased proliferation, colony formation, and invasion. In addition, cells with decreased expression of GABARAPL1 exhibited attenuated autophagic flux and a decreased number of lysosomes. Moreover, decreased GABARAPL1 expression led to cellular bioenergetic changes including increased basal oxygen consumption rate, increased intracellular ATP, increased total glutathione, and an accumulation of damaged mitochondria. Taken together, our results demonstrate that GABARAPL1 plays an important role in cell proliferation, invasion, and autophagic flux, as well as in mitochondrial homeostasis and cellular metabolic programs.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Autophagy/physiology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Microtubule-Associated Proteins/metabolism , Mitophagy/physiology , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Aldehydes/pharmacology , Apoptosis Regulatory Proteins/metabolism , Autophagy/genetics , Beclin-1 , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , DNA Damage , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Energy Metabolism , Female , Gene Knockdown Techniques , Humans , Lysosomal Membrane Proteins/genetics , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Lysosomes/pathology , Membrane Potential, Mitochondrial , Membrane Proteins/metabolism , Microtubule-Associated Proteins/antagonists & inhibitors , Microtubule-Associated Proteins/genetics , Mitophagy/genetics , Neoplasm Invasiveness , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , RNA, Small Interfering/genetics , Sequestosome-1 Protein , Tumor Stem Cell Assay
20.
J Neurochem ; 128(6): 950-61, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24138030

ABSTRACT

Parkinson's disease is a neurodegenerative movement disorder. The histopathology of Parkinson's disease comprises proteinaceous inclusions known as Lewy bodies, which contains aggregated α-synuclein. Cathepsin D (CD) is a lysosomal protease previously demonstrated to cleave α-synuclein and decrease its toxicity in both cell lines and mouse brains in vivo. Here, we show that pharmacological inhibition of CD, or introduction of catalytically inactive mutant CD, resulted in decreased CD activity and increased cathepsin B activity, suggesting a possible compensatory response to inhibition of CD activity. However, this increased cathepsin B activity was not sufficient to maintain α-synuclein degradation, as evidenced by the accumulation of endogenous α-synuclein. Interestingly, the levels of LC3, LAMP1, and LAMP2, proteins involved in autophagy-lysosomal activities, as well as total lysosomal mass as assessed by LysoTracker flow cytometry, were unchanged. Neither autophagic flux nor proteasomal activities differs between cells over-expressing wild-type versus mutant CD. These observations point to a critical regulatory role for that endogenous CD activity in dopaminergic cells in α-synuclein homeostasis which cannot be compensated for by increased Cathepsin B. These data support the potential need to enhance CD function in order to attenuate α-synuclein accumulation as a therapeutic strategy against development of synucleinopathy.


Subject(s)
Cathepsin B/metabolism , Cathepsin D/genetics , Neurodegenerative Diseases/metabolism , Neurons/metabolism , alpha-Synuclein/metabolism , Autophagy/drug effects , Autophagy/physiology , Caspases/metabolism , Cathepsin D/metabolism , Cell Line, Tumor , Gene Expression/physiology , Humans , Lentivirus/genetics , Lysosomes/metabolism , Neuroblastoma , Neurons/cytology , Neurons/drug effects , Pepstatins/pharmacology , Protease Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...