Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biotechnol J ; 20(3): 592-609, 2022 03.
Article in English | MEDLINE | ID: mdl-34717292

ABSTRACT

Melilotus species are used as green manure and rotation crops worldwide and contain abundant pharmacologically active coumarins. However, there is a paucity of information on its genome and coumarin production and function. Here, we reported a chromosome-scale assembly of Melilotus albus genome with 1.04 Gb in eight chromosomes, containing 71.42% repetitive elements. Long terminal repeat retrotransposon bursts coincided with declining of population sizes during the Quaternary glaciation. Resequencing of 94 accessions enabled insights into genetic diversity, population structure, and introgression. Melilotus officinalis had relatively larger genetic diversity than that of M. albus. The introgression existed between M. officinalis group and M. albus group, and gene flows was from M. albus to M. officinalis. Selection sweep analysis identified candidate genes associated with flower colour and coumarin biosynthesis. Combining genomics, BSA, transcriptomics, metabolomics, and biochemistry, we identified a ß-glucosidase (BGLU) gene cluster contributing to coumarin biosynthesis. MaBGLU1 function was verified by overexpression in M. albus, heterologous expression in Escherichia coli, and substrate feeding, revealing its role in scopoletin (coumarin derivative) production and showing that nonsynonymous variation drives BGLU enzyme activity divergence in Melilotus. Our work will accelerate the understanding of biologically active coumarins and their biosynthetic pathways, and contribute to genomics-enabled Melilotus breeding.


Subject(s)
Coumarins , Melilotus , Coumarins/metabolism , Melilotus/chemistry , Melilotus/genetics , Melilotus/metabolism , Plant Breeding , Systems Biology , Transcriptome/genetics
2.
Physiol Mol Biol Plants ; 27(10): 2269-2282, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34744365

ABSTRACT

Genetic diversity of plants is the brace of biodiversity and diversity within species, between species, and of ecosystems. SSR markers are the most preferable molecular marker tool that has been successfully used to study the genetic diversity of plant species. Development of miRNA-SSR markers has been deed in animals but is still limited in plants. In this study, 365 precursors miRNA were extracted from Melilotus albus (Ma) genome and used to design Ma miRNA-SSR primers. 137 Ma primer pairs (79 from known and 58 from novel pre-miRNAs) were obtained. 66 pairs of Ma miRNA-SSR primers were selected with polymorphisms and expected fragment size. The polymorphisms of primers were evaluated in 60 individuals of 15 Ma accessions. A total of 66 primer pairs showed high polymorphism, with average polymorphic information content of 0.49 among 15 Ma accessions and 0.63 among 18 Melilotus species, indicating that these primers have high polymorphisms. The number of alleles produced per primer ranged from 2 to 6 with an average of 3.6 alleles per locus in Ma accessions, and 2 to 10 numbers of alleles with a mean of 5.24 alleles per locus in Melilotus spp. For further studies, the genetic relationship was examined and the cluster analysis showed that 15 Ma accessions were grouped in three groups, on the other hand, 18 Melilotus species clustered into two groups. The analysis of molecular variance (AMOVA) revealed that 64.82% of the variation was found within the species and 35.18% between the species. The population structure analysis showed similar results with PCA analysis in that 18 species were grouped in two groups. In addition, 16,450 miRNA target genes were identified and used for GO and KEGG analysis. This is the first study to develop miRNA-SSR molecular markers in Melilotus spp., which has a great potential for marker-assisted, genetic improvement, genotyping applications, QTL analysis, and molecular-assisted selection studies for plant breeders and other researchers. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01086-z.

3.
Plants (Basel) ; 10(5)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925112

ABSTRACT

Melilotus is an important genus of legumes with industrial and medicinal value, partly due to the production of coumarin. To explore the genetic diversity and population structure of Melilotus, 40 accessions were analyzed using long terminal repeat (LTR) retrotransposon-based markers. A total of 585,894,349 bp of LTR retrotransposon sequences, accounting for 55.28% of the Melilotus genome, were identified using bioinformatics tools. A total of 181,040 LTR retrotransposons were identified and classified as Gypsy, Copia, or another type. A total of 350 pairs of primers were designed for assessing polymorphisms in 15 Melilotus albus accessions. Overall, 47 polymorphic primer pairs were screened for their availability and transferability in 18 Melilotus species. All the primer pairs were transferable, and 292 alleles were detected at 47 LTR retrotransposon loci. The average polymorphism information content (PIC) value was 0.66, which indicated that these markers were highly informative. Based on unweighted pair group method with arithmetic mean (UPGMA) dendrogram cluster analysis, the 18 Melilotus species were classified into three clusters. This study provides important data for future breeding programs and for implementing genetic improvements in the Melilotus genus.

SELECTION OF CITATIONS
SEARCH DETAIL
...