Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Bioinform Adv ; 4(1): vbae069, 2024.
Article in English | MEDLINE | ID: mdl-38799705

ABSTRACT

Summary: We explore the nuanced temporal and epistemological distinctions among natural sciences, particularly the contrasting treatment of time and the interplay between theory and experimentation. Physics, an exemplar of mature science, relies on theoretical models for predictability and simulations. In contrast, biology, traditionally experimental, is witnessing a computational surge, with data analytics and simulations reshaping its research paradigms. Despite these strides, a unified theoretical framework in biology remains elusive. We propose that contemporary global challenges might usher in a renewed emphasis, presenting an opportunity for the establishment of a novel theoretical underpinning for the life sciences. Availability and implementation: https://github.com/ouzounis/CLS-emerges Data in Json format, Images in PNG format.

2.
Biosystems ; 239: 105199, 2024 May.
Article in English | MEDLINE | ID: mdl-38641198

ABSTRACT

Over the past quarter-century, the field of evolutionary biology has been transformed by the emergence of complete genome sequences and the conceptual framework known as the 'Net of Life.' This paradigm shift challenges traditional notions of evolution as a tree-like process, emphasizing the complex, interconnected network of gene flow that may blur the boundaries between distinct lineages. In this context, gene loss, rather than horizontal gene transfer, is the primary driver of gene content, with vertical inheritance playing a principal role. The 'Net of Life' not only impacts our understanding of genome evolution but also has profound implications for classification systems, the rapid appearance of new traits, and the spread of diseases. Here, we explore the core tenets of the 'Net of Life' and its implications for genome-scale phylogenetic divergence, providing a comprehensive framework for further investigations in evolutionary biology.


Subject(s)
Evolution, Molecular , Gene Flow , Genome , Phylogeny , Genome/genetics , Animals , Humans , Gene Transfer, Horizontal , Models, Genetic , Biological Evolution
3.
PLoS Comput Biol ; 19(11): e1011498, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37934729

ABSTRACT

Public-domain availability for bioinformatics software resources is a key requirement that ensures long-term permanence and methodological reproducibility for research and development across the life sciences. These issues are particularly critical for widely used, efficient, and well-proven methods, especially those developed in research settings that often face funding discontinuities. We re-launch a range of established software components for computational genomics, as legacy version 1.0.1, suitable for sequence matching, masking, searching, clustering and visualization for protein family discovery, annotation and functional characterization on a genome scale. These applications are made available online as open source and include MagicMatch, GeneCAST, support scripts for CoGenT-like sequence collections, GeneRAGE and DifFuse, supported by centrally administered bioinformatics infrastructure funding. The toolkit may also be conceived as a flexible genome comparison software pipeline that supports research in this domain. We illustrate basic use by examples and pictorial representations of the registered tools, which are further described with appropriate documentation files in the corresponding GitHub release.


Subject(s)
Genomics , Software , Reproducibility of Results , Genomics/methods , Computational Biology/methods , Genome
4.
Nature ; 622(7983): 594-602, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37821698

ABSTRACT

Metagenomes encode an enormous diversity of proteins, reflecting a multiplicity of functions and activities1,2. Exploration of this vast sequence space has been limited to a comparative analysis against reference microbial genomes and protein families derived from those genomes. Here, to examine the scale of yet untapped functional diversity beyond what is currently possible through the lens of reference genomes, we develop a computational approach to generate reference-free protein families from the sequence space in metagenomes. We analyse 26,931 metagenomes and identify 1.17 billion protein sequences longer than 35 amino acids with no similarity to any sequences from 102,491 reference genomes or the Pfam database3. Using massively parallel graph-based clustering, we group these proteins into 106,198 novel sequence clusters with more than 100 members, doubling the number of protein families obtained from the reference genomes clustered using the same approach. We annotate these families on the basis of their taxonomic, habitat, geographical and gene neighbourhood distributions and, where sufficient sequence diversity is available, predict protein three-dimensional models, revealing novel structures. Overall, our results uncover an enormously diverse functional space, highlighting the importance of further exploring the microbial functional dark matter.


Subject(s)
Metagenome , Metagenomics , Microbiology , Proteins , Cluster Analysis , Metagenome/genetics , Metagenomics/methods , Proteins/chemistry , Proteins/classification , Proteins/genetics , Databases, Protein , Protein Conformation
5.
J Mol Evol ; 91(4): 471-481, 2023 08.
Article in English | MEDLINE | ID: mdl-37039856

ABSTRACT

Selenium-binding proteins represent a ubiquitous protein family and recently SBP1 was described as a new stress response regulator in plants. SBP1 has been characterized as a methanethiol oxidase, however its exact role remains unclear. Moreover, in mammals, it is involved in the regulation of anti-carcinogenic growth and progression as well as reduction/oxidation modulation and detoxification. In this work, we delineate the functional potential of certain motifs of SBP in the context of evolutionary relationships. The phylogenetic profiling approach revealed the absence of SBP in the fungi phylum as well as in most non eukaryotic organisms. The phylogenetic tree also indicates the differentiation and evolution of characteristic SBP motifs. Main evolutionary events concern the CSSC motif for which Acidobacteria, Fungi and Archaea carry modifications. Moreover, the CC motif is harbored by some bacteria and remains conserved in Plants, while modified to CxxC in Animals. Thus, the characteristic sequence motifs of SBPs mainly appeared in Archaea and Bacteria and retained in Animals and Plants. Our results demonstrate the emergence of SBP from bacteria and most likely as a methanethiol oxidase.


Subject(s)
Proteins , Selenium-Binding Proteins , Animals , Selenium-Binding Proteins/genetics , Selenium-Binding Proteins/metabolism , Phylogeny , Bacteria/genetics , Bacteria/metabolism , Archaea/genetics , Archaea/metabolism , Plants , Oxidoreductases/genetics , Mammals/metabolism
6.
F1000Res ; 12: 198, 2023.
Article in English | MEDLINE | ID: mdl-37082000

ABSTRACT

Background: The evolutionary rate of disordered proteins varies greatly due to the lack of structural constraints. So far, few studies have investigated the presence/absence patterns of intrinsically disordered regions (IDRs) across phylogenies in conjunction with human disease. In this study, we report a genome-wide analysis of compositional bias association with disease in human proteins and their taxonomic distribution. Methods: The human genome protein set provided by the Ensembl database was annotated and analysed with respect to both disease associations and the detection of compositional bias. The Uniprot Reference Proteome dataset, containing 11297 proteomes was used as target dataset for the comparative genomics of a well-defined subset of the Human Genome, including 100 characteristic, compositionally biased proteins, some linked to disease. Results: Cross-evaluation of compositional bias and disease-association in the human genome reveals a significant bias towards low complexity regions in disease-associated genes, with charged, hydrophilic amino acids appearing as over-represented. The phylogenetic profiling of 17 disease-associated, low complexity proteins across 11297 proteomes captures characteristic taxonomic distribution patterns. Conclusions: This is the first time that a combined genome-wide analysis of low complexity, disease-association and taxonomic distribution of human proteins is reported, covering structural, functional, and evolutionary properties. The reported framework can form the basis for large-scale, follow-up projects, encompassing the entire human genome and all known gene-disease associations.


Subject(s)
Genomics , Proteome , Humans , Proteome/genetics , Phylogeny , Genome, Human , Bias
7.
NAR Genom Bioinform ; 5(1): lqad025, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36968432

ABSTRACT

The nuclear pore complex exhibits different manifestations across eukaryotes, with certain components being restricted to specific clades. Several studies have been conducted to delineate the nuclear pore complex composition in various model organisms. Due to its pivotal role in cell viability, traditional lab experiments, such as gene knockdowns, can prove inconclusive and need to be complemented by a high-quality computational process. Here, using an extensive data collection, we create a robust library of nucleoporin protein sequences and their respective family-specific position-specific scoring matrices. By extensively validating each profile in different settings, we propose that the created profiles can be used to detect nucleoporins in proteomes with high sensitivity and specificity compared to existing methods. This library of profiles and the underlying sequence data can be used for the detection of nucleoporins in target proteomes.

8.
Nat Commun ; 13(1): 915, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177626

ABSTRACT

Quantitative or qualitative differences in immunity may drive clinical severity in COVID-19. Although longitudinal studies to record the course of immunological changes are ample, they do not necessarily predict clinical progression at the time of hospital admission. Here we show, by a machine learning approach using serum pro-inflammatory, anti-inflammatory and anti-viral cytokine and anti-SARS-CoV-2 antibody measurements as input data, that COVID-19 patients cluster into three distinct immune phenotype groups. These immune-types, determined by unsupervised hierarchical clustering that is agnostic to severity, predict clinical course. The identified immune-types do not associate with disease duration at hospital admittance, but rather reflect variations in the nature and kinetics of individual patient's immune response. Thus, our work provides an immune-type based scheme to stratify COVID-19 patients at hospital admittance into high and low risk clinical categories with distinct cytokine and antibody profiles that may guide personalized therapy.


Subject(s)
Antibodies, Viral/blood , COVID-19/pathology , Cytokines/blood , SARS-CoV-2/immunology , Severity of Illness Index , Aged , Coronavirus Nucleocapsid Proteins/immunology , Disease Progression , Female , Hospitalization , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Immunophenotyping/methods , Machine Learning , Male , Middle Aged , Phosphoproteins/immunology
9.
Environ Res ; 207: 112183, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34637759

ABSTRACT

In urban ecosystems, microbes play a key role in maintaining major ecological functions that directly support human health and city life. However, the knowledge about the species composition and functions involved in urban environments is still limited, which is largely due to the lack of reference genomes in metagenomic studies comprises more than half of unclassified reads. Here we uncovered 732 novel bacterial species from 4728 samples collected from various common surface with the matching materials in the mass transit system across 60 cities by the MetaSUB Consortium. The number of novel species is significantly and positively correlated with the city population, and more novel species can be identified in the skin-associated samples. The in-depth analysis of the new gene catalog showed that the functional terms have a significant geographical distinguishability. Moreover, we revealed that more biosynthetic gene clusters (BGCs) can be found in novel species. The co-occurrence relationship between BGCs and genera and the geographical specificity of BGCs can also provide us more information for the synthesis pathways of natural products. Expanded the known urban microbiome diversity and suggested additional mechanisms for taxonomic and functional characterization of the urban microbiome. Considering the great impact of urban microbiomes on human life, our study can also facilitate the microbial interaction analysis between human and urban environment.


Subject(s)
Metagenome , Microbiota , Bacteria/genetics , Humans , Metagenomics , Microbial Interactions , Microbiota/genetics
10.
Nucleic Acids Res ; 50(D1): D480-D487, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34850135

ABSTRACT

The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.


Subject(s)
Databases, Protein , Intrinsically Disordered Proteins/metabolism , Molecular Sequence Annotation , Software , Amino Acid Sequence , DNA/genetics , DNA/metabolism , Datasets as Topic , Gene Ontology , Humans , Internet , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Protein Binding , RNA/genetics , RNA/metabolism
11.
Viruses ; 13(4)2021 03 29.
Article in English | MEDLINE | ID: mdl-33805449

ABSTRACT

The Covid-19 pandemic has required nonpharmaceutical interventions, primarily physical distancing, personal hygiene and face mask use, to limit community transmission, irrespective of seasons. In fact, the seasonality attributes of this pandemic remain one of its biggest unknowns. Early studies based on past experience from respiratory diseases focused on temperature or humidity, with disappointing results. Our hypothesis that ultraviolet (UV) radiation levels might be a factor and a more appropriate parameter has emerged as an alternative to assess seasonality and exploit it for public health policies. Using geographical, socioeconomic and epidemiological criteria, we selected twelve North-equatorial-South countries with similar characteristics. We then obtained UV levels, mobility and Covid-19 daily incidence rates for nearly the entire 2020. Using machine learning, we demonstrated that UV radiation strongly associated with incidence rates, more so than mobility did, indicating that UV is a key seasonality indicator for Covid-19, irrespective of the initial conditions of the epidemic. Our findings can inform the implementation of public health emergency measures, partly based on seasons in the Northern and Southern Hemispheres, as the pandemic unfolds into 2021.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/radiation effects , Humans , Incidence , Machine Learning , Pandemics , SARS-CoV-2/physiology , Seasons , Temperature , Ultraviolet Rays , Weather
12.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: mdl-33468697

ABSTRACT

Orf8, one of the most puzzling genes in the SARS lineage of coronaviruses, marks a unique and striking difference in genome organization between SARS-CoV-2 and SARS-CoV-1. Here, using sequence comparisons, we unequivocally reveal the distant sequence similarities between SARS-CoV-2 Orf8 with its SARS-CoV-1 counterparts and the X4-like genes of coronaviruses, including its highly divergent "paralog" gene Orf7a, whose product is a potential immune antagonist of known structure. Supervised sequence space walks unravel identity levels that drop below 10% and yet exhibit subtle conservation patterns in this novel superfamily, characterized by an immunoglobulin-like beta sandwich topology. We document the high accuracy of the sequence space walk process in detail and characterize the subgroups of the superfamily in sequence space by systematic annotation of gene and taxon groups. While SARS-CoV-1 Orf7a and Orf8 genes are most similar to bat virus sequences, their SARS-CoV-2 counterparts are closer to pangolin virus homologs, reflecting the fine structure of conservation patterns within the SARS-CoV-2 genomes. The divergence between Orf7a and Orf8 is exceptionally idiosyncratic, since Orf7a is more constrained, whereas Orf8 is subject to rampant change, a peculiar feature that may be related to hitherto-unknown viral infection strategies. Despite their common origin, the Orf7a and Orf8 protein families exhibit different modes of evolutionary trajectories within the coronavirus lineage, which might be partly attributable to their complex interactions with the mammalian host cell, reflected by a multitude of functional associations of Orf8 in SARS-CoV-2 compared to a very small number of interactions discovered for Orf7a.IMPORTANCE Orf8 is one of the most puzzling genes in the SARS lineage of coronaviruses, including SARS-CoV-2. Using sophisticated sequence comparisons, we confirm its origins from Orf7a, another gene in the lineage that appears as more conserved, compared to Orf8. Orf7a is a potential immune antagonist of known structure, while a deletion of Orf8 was shown to decrease the severity of the infection in a cohort study. The subtle sequence similarities imply that Orf8 has the same immunoglobulin-like fold as Orf7a, confirmed by structure determination. We characterize the subgroups of this superfamily and demonstrate the highly idiosyncratic divergence patterns during the evolution of the virus.


Subject(s)
COVID-19/immunology , Immune Evasion , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Proteins/immunology , Animals , COVID-19/virology , Databases, Genetic , Evolution, Molecular , Genome, Viral , Humans , Phylogeny , Sequence Alignment , Viral Proteins/genetics
13.
Big Data ; 9(1): 63-71, 2021 02.
Article in English | MEDLINE | ID: mdl-32991205

ABSTRACT

As high-throughput approaches in biological and biomedical research are transforming the life sciences into information-driven disciplines, modern analytics platforms for big data have started to address the needs for efficient and systematic data analysis and interpretation. We observe that radiobiology is following this general trend, with -omics information providing unparalleled depth into the biomolecular mechanisms of radiation response-defined as systems radiobiology. We outline the design of computational frameworks and discuss the analysis of big data in low-dose ionizing radiation (LDIR) responses of the mammalian brain. Following successful examples and best practices of approaches for the analysis of big data in life sciences and health care, we present the needs and requirements for radiation research. Our goal is to raise awareness for the radiobiology community about the new technological possibilities that can capture complex information and execute data analytics on a large scale. The production of large data sets from genome-wide experiments (quantity) and the complexity of radiation research with multidimensional experimental designs (quality) will necessitate the adoption of latest information technologies. The main objective was to translate research results into applied clinical and epidemiological practice and understand the responses of biological tissues to LDIR to define new radiation protection policies. We envisage a future where multidisciplinary teams include data scientists, artificial intelligence experts, DevOps engineers, and of course radiation experts to fulfill the augmented needs of the radiobiology community, accelerate research, and devise new strategies.


Subject(s)
Artificial Intelligence , Big Data , Animals , Radiobiology , Research Design
14.
Comput Struct Biotechnol J ; 18: 4093-4102, 2020.
Article in English | MEDLINE | ID: mdl-33363705

ABSTRACT

The genome of SARS-CoV-2, the coronavirus responsible for the Covid-19 pandemic, encodes a number of accessory genes. The longest accessory gene, Orf3a, plays important roles in the virus lifecycle indicated by experimental findings, known polymorphisms, its evolutionary trajectory and a distinct three-dimensional fold. Here we show that supervised, sensitive database searches with Orf3a detect weak, yet significant and highly specific similarities to the M proteins of coronaviruses. The similarity profiles can be used to derive low-resolution three-dimensional models for M proteins based on Orf3a as a structural template. The models also explain the emergence of Orf3a from M proteins and suggest a recent origin across the coronavirus lineage, enunciated by its restricted phylogenetic distribution. This study provides evidence for the common origin of M and Orf3a families and proposes for the first time a working model for the structure of the universally distributed M proteins in coronaviruses, consistent with the properties of both protein families.

15.
Microb Genom ; 6(11)2020 11.
Article in English | MEDLINE | ID: mdl-32924924

ABSTRACT

As genome sequencing efforts are unveiling the genetic diversity of the biosphere with an unprecedented speed, there is a need to accurately describe the structural and functional properties of groups of extant species whose genomes have been sequenced, as well as their inferred ancestors, at any given taxonomic level of their phylogeny. Elaborate approaches for the reconstruction of ancestral states at the sequence level have been developed, subsequently augmented by methods based on gene content. While these approaches of sequence or gene-content reconstruction have been successfully deployed, there has been less progress on the explicit inference of functional properties of ancestral genomes, in terms of metabolic pathways and other cellular processes. Herein, we describe PathTrace, an efficient algorithm for parsimony-based reconstructions of the evolutionary history of individual metabolic pathways, pivotal representations of key functional modules of cellular function. The algorithm is implemented as a five-step process through which pathways are represented as fuzzy vectors, where each enzyme is associated with a taxonomic conservation value derived from the phylogenetic profile of its protein sequence. The method is evaluated with a selected benchmark set of pathways against collections of genome sequences from key data resources. By deploying a pangenome-driven approach for pathway sets, we demonstrate that the inferred patterns are largely insensitive to noise, as opposed to gene-content reconstruction methods. In addition, the resulting reconstructions are closely correlated with the evolutionary distance of the taxa under study, suggesting that a diligent selection of target pangenomes is essential for maintaining cohesiveness of the method and consistency of the inference, serving as an internal control for an arbitrary selection of queries. The PathTrace method is a first step towards the large-scale analysis of metabolic pathway evolution and our deeper understanding of functional relationships reflected in emerging pangenome collections.


Subject(s)
Algorithms , Bacteria/genetics , Bacteria/metabolism , Evolution, Molecular , Genome/genetics , Metabolic Networks and Pathways/genetics , Amino Acid Sequence , Base Sequence , Phylogeny , Software
16.
EMBO Rep ; 21(4): e50388, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32216085

ABSTRACT

University accountants and administrators should support scientists going to meetings, not further burden them with bureaucratic hurdles, expense claims or unnecessary auditing.


Subject(s)
Travel , Humans
17.
Bioinformatics ; 36(9): 2963-2965, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32129821
18.
NAR Genom Bioinform ; 2(4): lqaa088, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33575632

ABSTRACT

Ribosomal genes produce the constituents of the ribosome, one of the most conserved subcellular structures of all cells, from bacteria to eukaryotes, including animals. There are notions that some protein-coding ribosomal genes vary in their roles across species, particularly vertebrates, through the involvement of some in a number of genetic diseases. Based on extensive sequence comparisons and systematic curation, we establish a reference set for ribosomal proteins (RPs) in eleven vertebrate species and quantify their sequence conservation levels. Moreover, we correlate their coordinated gene expression patterns within up to 33 tissues and assess the exceptional role of paralogs in tissue specificity. Importantly, our analysis supported by the development and use of machine learning models strongly proposes that the variation in the observed tissue-specific gene expression of RPs is rather species-related and not due to tissue-based evolutionary processes. The data obtained suggest that RPs exhibit a complex relationship between their structure and function that broadly maintains a consistent expression landscape across tissues, while most of the variation arises from species idiosyncrasies. The latter may be due to evolutionary change and adaptation, rather than functional constraints at the tissue level throughout the vertebrate lineage.

19.
Brief Bioinform ; 21(2): 458-472, 2020 03 23.
Article in English | MEDLINE | ID: mdl-30698641

ABSTRACT

There are multiple definitions for low complexity regions (LCRs) in protein sequences, with all of them broadly considering LCRs as regions with fewer amino acid types compared to an average composition. Following this view, LCRs can also be defined as regions showing composition bias. In this critical review, we focus on the definition of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats, while compositionally biased, might also induce ordered structures. We illustrate this dichotomy, and more generally the overlaps between different properties related to LCRs, using examples. We argue that statistical measures alone cannot capture all structural aspects of LCRs and recommend the combined usage of a variety of predictive tools and measurements. While the methodologies available to study LCRs are already very advanced, we foresee that a more comprehensive annotation of sequences in the databases will enable the improvement of predictions and a better understanding of the evolution and the connection between structure and function of LCRs. This will require the use of standards for the generation and exchange of data describing all aspects of LCRs. SHORT ABSTRACT: There are multiple definitions for low complexity regions (LCRs) in protein sequences. In this critical review, we focus on the definition of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats, while compositionally biased, might also induce ordered structures. We illustrate this dichotomy, plus overlaps between different properties related to LCRs, using examples.


Subject(s)
Proteins/chemistry , Algorithms , Amino Acid Sequence , Databases, Protein , Evolution, Molecular , Protein Conformation , Protein Domains
20.
Nucleic Acids Res ; 48(D1): D269-D276, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31713636

ABSTRACT

The Database of Protein Disorder (DisProt, URL: https://disprot.org) provides manually curated annotations of intrinsically disordered proteins from the literature. Here we report recent developments with DisProt (version 8), including the doubling of protein entries, a new disorder ontology, improvements of the annotation format and a completely new website. The website includes a redesigned graphical interface, a better search engine, a clearer API for programmatic access and a new annotation interface that integrates text mining technologies. The new entry format provides a greater flexibility, simplifies maintenance and allows the capture of more information from the literature. The new disorder ontology has been formalized and made interoperable by adopting the OWL format, as well as its structure and term definitions have been improved. The new annotation interface has made the curation process faster and more effective. We recently showed that new DisProt annotations can be effectively used to train and validate disorder predictors. We believe the growth of DisProt will accelerate, contributing to the improvement of function and disorder predictors and therefore to illuminate the 'dark' proteome.


Subject(s)
Databases, Protein , Intrinsically Disordered Proteins/chemistry , Biological Ontologies , Data Curation , Molecular Sequence Annotation
SELECTION OF CITATIONS
SEARCH DETAIL
...