Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Neurosci ; 42(25): 5070-5084, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35589393

ABSTRACT

Visual cortex organization is highly consistent across individuals. But to what degree does this consistency depend on life experience, in particular sensory experience? In this study, we asked whether visual cortex reorganization in congenital blindness results in connectivity patterns that are particularly variable across individuals, focusing on resting-state functional connectivity (RSFC) patterns from the primary visual cortex. We show that the absence of shared visual experience results in more variable RSFC patterns across blind individuals than sighted controls. Increased variability is specifically found in areas that show a group difference between the blind and sighted in their RSFC. These findings reveal a relationship between brain plasticity and individual variability; reorganization manifests variably across individuals. We further investigated the different patterns of reorganization in the blind, showing that the connectivity to frontal regions, proposed to have a role in the reorganization of the visual cortex of the blind toward higher cognitive roles, is highly variable. Further, we link some of the variability in visual-to-frontal connectivity to another environmental factor-duration of formal education. Together, these findings show a role of postnatal sensory and socioeconomic experience in imposing consistency on brain organization. By revealing the idiosyncratic nature of neural reorganization, these findings highlight the importance of considering individual differences in fitting sensory aids and restoration approaches for vision loss.SIGNIFICANCE STATEMENT The typical visual system is highly consistent across individuals. What are the origins of this consistency? Comparing the consistency of visual cortex connectivity between people born blind and sighted people, we showed that blindness results in higher variability, suggesting a key impact of postnatal individual experience on brain organization. Further, connectivity patterns that changed following blindness were particularly variable, resulting in diverse patterns of brain reorganization. Individual differences in reorganization were also directly affected by nonvisual experiences in the blind (years of formal education). Together, these findings show a role of sensory and socioeconomic experiences in creating individual differences in brain organization and endorse the use of individual profiles for rehabilitation and restoration of vision loss.


Subject(s)
Individuality , Visual Cortex , Blindness , Brain/diagnostic imaging , Brain Mapping , Humans , Magnetic Resonance Imaging , Visual Cortex/diagnostic imaging
2.
Hum Brain Mapp ; 42(16): 5204-5216, 2021 11.
Article in English | MEDLINE | ID: mdl-34323339

ABSTRACT

Individualized treatment of acute stroke depends on the timely detection of ischemia and potentially salvageable tissue in the brain. Using functional MRI (fMRI), it is possible to characterize cerebral blood flow from blood-oxygen-level-dependent (BOLD) signals without the administration of exogenous contrast agents. In this study, we applied spatial independent component analysis to resting-state fMRI data of 37 stroke patients scanned within 24 hr of symptom onset, 17 of whom received follow-up scans the next day. Our analysis revealed "Hypoperfusion spatially-Independent Components" (HICs) whose spatial patterns of BOLD signal resembled regions of delayed perfusion depicted by dynamic susceptibility contrast MRI. These HICs were detected even in the presence of excessive patient motion, and disappeared following successful tissue reperfusion. The unique spatial and temporal features of HICs allowed them to be distinguished with high accuracy from other components in a user-independent manner (area under the curve = 0.93, balanced accuracy = 0.90, sensitivity = 1.00, and specificity = 0.85). Our study therefore presents a new, noninvasive method for assessing blood flow in acute stroke that minimizes interpretative subjectivity and is robust to severe patient motion.


Subject(s)
Cerebrovascular Circulation/physiology , Connectome/methods , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/physiopathology , Magnetic Resonance Imaging/methods , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
3.
Neuroimage Clin ; 24: 101947, 2019.
Article in English | MEDLINE | ID: mdl-31376644

ABSTRACT

The functional organization of the brain can be represented as a low-dimensional space that reflects its macroscale hierarchy. The dimensions of this space, described as connectivity gradients, capture the similarity of areas' connections along a continuous space. Studying how pathological perturbations with known effects on functional connectivity affect these connectivity gradients provides support for their biological relevance. Previous work has shown that localized lesions cause widespread functional connectivity alterations in structurally intact areas, affecting a network of interconnected regions. By using acute stroke as a model of the effects of focal lesions on the connectome, we apply the connectivity gradient framework to depict how functional reorganization occurs throughout the brain, unrestricted by traditional definitions of functional network boundaries. We define a three-dimensional connectivity space template based on functional connectivity data from healthy controls. By projecting lesion locations into this space, we demonstrate that ischemic strokes result in dimension-specific alterations in functional connectivity over the first week after symptom onset. Specifically, changes in functional connectivity were captured along connectivity Gradients 1 and 3. The degree of functional connectivity change was associated with the distance from the lesion along these connectivity gradients (a measure of functional similarity) regardless of the anatomical distance from the lesion. Together, these results provide support for the biological validity of connectivity gradients and suggest a novel framework to characterize connectivity alterations after stroke.


Subject(s)
Brain Ischemia/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/trends , Nerve Net/diagnostic imaging , Stroke/diagnostic imaging , Aged , Brain/physiopathology , Brain Ischemia/physiopathology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Nerve Net/physiopathology , Stroke/physiopathology
5.
Brain ; 138(Pt 6): 1679-95, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25869851

ABSTRACT

Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind.


Subject(s)
Blindness/physiopathology , Retina/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Adult , Case-Control Studies , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
7.
PLoS One ; 8(12): e84565, 2013.
Article in English | MEDLINE | ID: mdl-24367675

ABSTRACT

Pathological gambling (PG) shares clinical characteristics with substance-use disorders and is thus discussed as a behavioral addiction. Recent neuroimaging studies on PG report functional changes in prefrontal structures and the mesolimbic reward system. While an imbalance between these structures has been related to addictive behavior, whether their dysfunction in PG is reflected in the interaction between them remains unclear. We addressed this question using functional connectivity resting-state fMRI in male subjects with PG and controls. Seed-based functional connectivity was computed using two regions-of-interest, based on the results of a previous voxel-based morphometry study, located in the prefrontal cortex and the mesolimbic reward system (right middle frontal gyrus and right ventral striatum). PG patients demonstrated increased connectivity from the right middle frontal gyrus to the right striatum as compared to controls, which was also positively correlated with nonplanning aspect of impulsiveness, smoking and craving scores in the PG group. Moreover, PG patients demonstrated decreased connectivity from the right middle frontal gyrus to other prefrontal areas as compared to controls. The right ventral striatum demonstrated increased connectivity to the right superior and middle frontal gyrus and left cerebellum in PG patients as compared to controls. The increased connectivity to the cerebellum was positively correlated with smoking in the PG group. Our results provide further evidence for alterations in functional connectivity in PG with increased connectivity between prefrontal regions and the reward system, similar to connectivity changes reported in substance use disorder.


Subject(s)
Gambling/physiopathology , Nerve Net/physiopathology , Prefrontal Cortex/pathology , Prefrontal Cortex/physiopathology , Reward , Adult , Basal Ganglia/pathology , Basal Ganglia/physiopathology , Behavior, Addictive/pathology , Behavior, Addictive/physiopathology , Brain Mapping , Gambling/pathology , Humans , Magnetic Resonance Imaging , Male , Nerve Net/pathology , Psychometrics , Self Report
8.
J Cereb Blood Flow Metab ; 33(8): 1279-85, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23715061

ABSTRACT

While ischemic stroke reflects focal damage determined by the affected vascular territory, clinical symptoms are often more complex and may be better explained by additional indirect effects of the focal lesion. Assumed to be structurally underpinned by anatomical connections, supporting evidence has been found using alterations in the functional connectivity of resting-state functional magnetic resonance imaging (fMRI) data in both sensorimotor and attention networks. To assess the generalizability of this phenomenon in a stroke population with heterogeneous lesions, we investigated the distal effects of lesions on a global level. Longitudinal resting-state fMRI scans were acquired at three consecutive time points, beginning during the acute phase (days 1, 7, and 90 post-stroke) in 12 patients after ischemic stroke. We found a preferential functional change in affected networks (i.e., networks containing lesions changed more during recovery when compared with unaffected networks). This change in connectivity was significantly correlated with clinical changes assessed with the National Institute of Health Stroke Scale. Our results provide evidence that the functional architecture of large-scale networks is critical to understanding the clinical effect and trajectory of post-stroke recovery.


Subject(s)
Nerve Net/pathology , Stroke/pathology , Aged , Brain Ischemia/pathology , Brain Mapping , Female , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/pathology , Recovery of Function/physiology
9.
PLoS One ; 7(5): e37238, 2012.
Article in English | MEDLINE | ID: mdl-22629375

ABSTRACT

Clinical diagnosis of disorders of consciousness (DOC) caused by brain injury poses great challenges since patients are often behaviorally unresponsive. A promising new approach towards objective DOC diagnosis may be offered by the analysis of ultra-slow (<0.1 Hz) spontaneous brain activity fluctuations measured with functional magnetic resonance imaging (fMRI) during the resting-state. Previous work has shown reduced functional connectivity within the "default network", a subset of regions known to be deactivated during engaging tasks, which correlated with the degree of consciousness impairment. However, it remains unclear whether the breakdown of connectivity is restricted to the "default network", and to what degree changes in functional connectivity can be observed at the single subject level. Here, we analyzed resting-state inter-hemispheric connectivity in three homotopic regions of interest, which could reliably be identified based on distinct anatomical landmarks, and were part of the "Extrinsic" (externally oriented, task positive) network (pre- and postcentral gyrus, and intraparietal sulcus). Resting-state fMRI data were acquired for a group of 11 healthy subjects and 8 DOC patients. At the group level, our results indicate decreased inter-hemispheric functional connectivity in subjects with impaired awareness as compared to subjects with intact awareness. Individual connectivity scores significantly correlated with the degree of consciousness. Furthermore, a single-case statistic indicated a significant deviation from the healthy sample in 5/8 patients. Importantly, of the three patients whose connectivity indices were comparable to the healthy sample, one was diagnosed as locked-in. Taken together, our results further highlight the clinical potential of resting-state connectivity analysis and might guide the way towards a connectivity measure complementing existing DOC diagnosis.


Subject(s)
Brain/physiopathology , Consciousness Disorders/physiopathology , Nerve Net/physiopathology , Adult , Aged , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/physiopathology
10.
Front Syst Neurosci ; 6: 13, 2012.
Article in English | MEDLINE | ID: mdl-22470320

ABSTRACT

Functional magnetic resonance data acquired in a task-absent condition ("resting state") require new data analysis techniques that do not depend on an activation model. Here, we propose a new analysis method called Connectivity Concordance Mapping (CCM). The main idea is to assign a label to each voxel based on the reproducibility of its whole-brain pattern of connectivity. Specifically, we compute the correlations of time courses of each voxel with every other voxel for each measurement. Voxels whose correlation pattern is consistent across measurements receive high values. The result of a CCM analysis is thus a voxel-wise map of concordance values. Regions of high inter-subject concordance can be assumed to be functionally consistent, and may thus be of specific interest for further analysis. Here we present two fMRI studies to demonstrate the possible applications of the algorithm. The first is a eyes-open/eyes-closed paradigm designed to highlight the potential of the method in a relatively simple domain. The second study is a longitudinal repeated measurement of a patient following stroke. Longitudinal clinical studies such as this may represent the most interesting domain of applications for this algorithm.

11.
Hum Brain Mapp ; 33(4): 778-96, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21484953

ABSTRACT

OBJECTIVES: Recent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. EXPERIMENTAL DESIGN: A spatial independent component analysis-based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation-corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain-damaged patients [locked-in syndrome (n = 2), minimally conscious (n = 1), and vegetative state (n = 8)]. PRINCIPAL OBSERVATIONS: All vegetative patients showed fewer connections in the default-mode areas, when compared with controls, contrary to locked-in patients who showed near-normal connectivity. In the minimally conscious-state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. CONCLUSIONS: When assessing resting-state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non-neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients.


Subject(s)
Brain Mapping/methods , Brain/physiopathology , Consciousness Disorders/physiopathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Infant , Male , Middle Aged , Nerve Net/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL