Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Anesthesiol ; 24(1): 241, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020288

ABSTRACT

BACKGROUND: Bilateral diaphragmatic dysfunction can lead to dyspnea and recurrent respiratory failure. In rare cases, it may result from high cervical spinal cord ischemia (SCI) due to anterior spinal artery syndrome (ASAS). We present a case of a patient experiencing persistent isolated diaphragmatic paralysis after SCI at level C3/C4 following thoracic endovascular aortic repair (TEVAR) for Kommerell's diverticulum. This is, to our knowledge, the first documented instance of a patient fully recovering from tetraplegia due to SCI while still exhibiting ongoing bilateral diaphragmatic paralysis. CASE PRESENTATION: The patient, a 67-year-old male, presented to the Vascular Surgery Department for surgical treatment of symptomatic Kommerell's diverticulum in an aberrant right subclavian artery. After successful surgery in two stages, the patient presented with respiratory insufficiency and flaccid tetraparesis consistent with anterior spinal artery syndrome with maintained sensibility of all extremities. A computerized tomography scan (CT) revealed a high-grade origin stenosis of the left vertebral artery, which was treated by angioplasty and balloon-expandable stenting. Consecutively, the tetraparesis immediately resolved, but weaning remained unsuccessful requiring tracheostomy. Abdominal ultrasound revealed a residual bilateral diaphragmatic paralysis. A repeated magnetic resonance imaging (MRI) 14 days after vertebral artery angioplasty confirmed SCI at level C3/C4. The patient was transferred to a pulmonary clinic with weaning center for further recovery. CONCLUSIONS: This novel case highlights the need to consider diaphragmatic paralysis due to SCI as a cause of respiratory failure in patients following aortic surgery. Diaphragmatic paralysis may remain as an isolated residual in these patients.


Subject(s)
Respiratory Paralysis , Spinal Cord Ischemia , Humans , Male , Aged , Spinal Cord Ischemia/etiology , Respiratory Paralysis/etiology , Respiratory Paralysis/surgery , Postoperative Complications/etiology , Subclavian Artery/surgery , Subclavian Artery/diagnostic imaging , Subclavian Artery/abnormalities , Ventilator Weaning , Cervical Vertebrae/surgery , Aorta, Thoracic/surgery , Cardiovascular Abnormalities
2.
J Clin Med ; 13(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38256440

ABSTRACT

Bloodstream infection (BSI), a frequent cause of severe sepsis, is a life-threatening complication in critically ill patients and still associated with a high mortality rate. Rapid pathogen identification from blood is crucial for an early diagnosis and the treatment of patients with suspected BSI. For this purpose, novel diagnostic tools on the base of genetic analysis have emerged for clinical application. The aim of this study was to assess the diagnostic value of additional next-generation sequencing (NGS) pathogen test for patients with suspected BSI in a surgical ICU and its potential impact on antimicrobial therapy. In this retrospective single-centre study, clinical data and results from blood culture (BC) and NGS pathogen diagnostics were analysed for ICU patients with suspected BSI. Consecutive changes in antimicrobial therapy and diagnostic procedures were evaluated. Results: 41 cases with simultaneous NGS and BC sampling were assessed. NGS showed a statistically non-significant higher positivity rate than BC (NGS: 58.5% (24/41 samples) vs. BC: 21.9% (9/41); p = 0.056). NGS detected eight different potentially relevant bacterial species, one fungus and six different viruses, whereas BC detected four different bacterial species and one fungus. NGS results affected antimicrobial treatment in 7.3% of cases. Conclusions: NGS-based diagnostics have the potential to offer a higher positivity rate than conventional culture-based methods in patients with suspected BSI. Regarding the high cost, their impact on anti-infective therapy is currently limited. Larger randomized prospective clinical multicentre studies are required to assess the clinical benefit of this novel diagnostic technology.

4.
Life (Basel) ; 12(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36556323

ABSTRACT

(1) Background: Cardiopulmonary resuscitation (CPR), as a form of basic life support, is critical for maintaining cardiac and cerebral perfusion during cardiac arrest, a medical condition with high expected mortality. Current guidelines emphasize the importance of rapid recognition and prompt initiation of high-quality CPR, including appropriate cardiac compression depth and rate. As space agencies plan missions to the Moon or even to explore Mars, the duration of missions will increase and with it the chance of life-threatening conditions requiring CPR. The objective of this review was to examine the effectiveness and feasibility of chest compressions as part of CPR following current terrestrial guidelines under hypogravity conditions such as those encountered on planetary or lunar surfaces; (2) Methods: A systematic literature search was conducted by two independent reviewers (PubMed, Cochrane Register of Controlled Trials, ResearchGate, National Aeronautics and Space Administration (NASA)). Only controlled trials conducting CPR following guidelines from 2010 and after with advised compression depths of 50 mm and above were included; (3) Results: Four different publications were identified. All studies examined CPR feasibility in 0.38 G simulating the gravitational force on Mars. Two studies also simulated hypogravity on the Moon with a force of 0.17 G/0,16 G. All CPR protocols consisted of chest compressions only without ventilation. A compression rate above 100/s could be maintained in all studies and hypogravity conditions. Two studies showed a significant reduction of compression depth in 0.38 G (-7.2 mm/-8.71 mm) and 0.17 G (-12.6 mm/-9.85 mm), respectively, with nearly similar heart rates, compared to 1 G conditions. In the other two studies, participants with higher body weight could maintain a nearly adequate mean depth while effort measured by heart rate (+23/+13.85 bpm) and VO2max (+5.4 mL·kg-1·min-1) increased significantly; (4) Conclusions: Adequate CPR quality in hypogravity can only be achieved under increased physical stress to compensate for functional weight loss. Without this extra effort, the depth of compression quickly falls below the guideline level, especially for light-weight rescuers. This means faster fatigue during resuscitation and the need for more frequent changes of the resuscitator than advised in terrestrial guidelines. Alternative techniques in the straddling position should be further investigated in hypogravity.

SELECTION OF CITATIONS
SEARCH DETAIL