Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 44(D1): D574-80, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26578574

ABSTRACT

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces.


Subject(s)
Databases, Genetic , Genome, Bacterial , Genome, Fungal , Genome, Plant , Invertebrates/genetics , Animals , Diploidy , Eukaryota/genetics , Genetic Variation , Genome , Polyploidy , Sequence Alignment
2.
Nucleic Acids Res ; 43(Database issue): D662-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25352552

ABSTRACT

Ensembl (http://www.ensembl.org) is a genomic interpretation system providing the most up-to-date annotations, querying tools and access methods for chordates and key model organisms. This year we released updated annotation (gene models, comparative genomics, regulatory regions and variation) on the new human assembly, GRCh38, although we continue to support researchers using the GRCh37.p13 assembly through a dedicated site (http://grch37.ensembl.org). Our Regulatory Build has been revamped to identify regulatory regions of interest and to efficiently highlight their activity across disparate epigenetic data sets. A number of new interfaces allow users to perform large-scale comparisons of their data against our annotations. The REST server (http://rest.ensembl.org), which allows programs written in any language to query our databases, has moved to a full service alongside our upgraded website tools. Our online Variant Effect Predictor tool has been updated to process more variants and calculate summary statistics. Lastly, the WiggleTools package enables users to summarize large collections of data sets and view them as single tracks in Ensembl. The Ensembl code base itself is more accessible: it is now hosted on our GitHub organization page (https://github.com/Ensembl) under an Apache 2.0 open source license.


Subject(s)
Databases, Nucleic Acid , Genomics , Animals , Epigenesis, Genetic , Genetic Variation , Genome, Human , Humans , Internet , Mice , Molecular Sequence Annotation , Regulatory Sequences, Nucleic Acid , Software
3.
Nucleic Acids Res ; 42(Database issue): D749-55, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24316576

ABSTRACT

Ensembl (http://www.ensembl.org) creates tools and data resources to facilitate genomic analysis in chordate species with an emphasis on human, major vertebrate model organisms and farm animals. Over the past year we have increased the number of species that we support to 77 and expanded our genome browser with a new scrollable overview and improved variation and phenotype views. We also report updates to our core datasets and improvements to our gene homology relationships from the addition of new species. Our REST service has been extended with additional support for comparative genomics and ontology information. Finally, we provide updated information about our methods for data access and resources for user training.


Subject(s)
Databases, Genetic , Genomics , Animals , Chordata/genetics , Genetic Variation , Humans , Internet , Mice , Molecular Sequence Annotation , Phenotype , Rats
4.
Nucleic Acids Res ; 41(Database issue): D48-55, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23203987

ABSTRACT

The Ensembl project (http://www.ensembl.org) provides genome information for sequenced chordate genomes with a particular focus on human, mouse, zebrafish and rat. Our resources include evidenced-based gene sets for all supported species; large-scale whole genome multiple species alignments across vertebrates and clade-specific alignments for eutherian mammals, primates, birds and fish; variation data resources for 17 species and regulation annotations based on ENCODE and other data sets. Ensembl data are accessible through the genome browser at http://www.ensembl.org and through other tools and programmatic interfaces.


Subject(s)
Databases, Genetic , Genomics , Animals , Gene Expression Regulation , Genetic Variation , Humans , Internet , Mice , Molecular Sequence Annotation , Rats , Software , Zebrafish/genetics
5.
PLoS Genet ; 8(9): e1002903, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22969434

ABSTRACT

Left-sided congenital heart disease (CHD) encompasses a spectrum of malformations that range from bicuspid aortic valve to hypoplastic left heart syndrome. It contributes significantly to infant mortality and has serious implications in adult cardiology. Although left-sided CHD is known to be highly heritable, the underlying genetic determinants are largely unidentified. In this study, we sought to determine the impact of structural genomic variation on left-sided CHD and compared multiplex families (464 individuals with 174 affecteds (37.5%) in 59 multiplex families and 8 trios) to 1,582 well-phenotyped controls. 73 unique inherited or de novo CNVs in 54 individuals were identified in the left-sided CHD cohort. After stringent filtering, our gene inventory reveals 25 new candidates for LS-CHD pathogenesis, such as SMC1A, MFAP4, and CTHRC1, and overlaps with several known syndromic loci. Conservative estimation examining the overlap of the prioritized gene content with CNVs present only in affected individuals in our cohort implies a strong effect for unique CNVs in at least 10% of left-sided CHD cases. Enrichment testing of gene content in all identified CNVs showed a significant association with angiogenesis. In this first family-based CNV study of left-sided CHD, we found that both co-segregating and de novo events associate with disease in a complex fashion at structural genomic level. Often viewed as an anatomically circumscript disease, a subset of left-sided CHD may in fact reflect more general genetic perturbations of angiogenesis and/or vascular biology.


Subject(s)
DNA Copy Number Variations , Heart Defects, Congenital/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Family , Female , Heart/embryology , Humans , Male , Mice , Middle Aged , Myocardium/metabolism , Neovascularization, Physiologic , Young Adult
6.
Nucleic Acids Res ; 40(Database issue): D84-90, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22086963

ABSTRACT

The Ensembl project (http://www.ensembl.org) provides genome resources for chordate genomes with a particular focus on human genome data as well as data for key model organisms such as mouse, rat and zebrafish. Five additional species were added in the last year including gibbon (Nomascus leucogenys) and Tasmanian devil (Sarcophilus harrisii) bringing the total number of supported species to 61 as of Ensembl release 64 (September 2011). Of these, 55 species appear on the main Ensembl website and six species are provided on the Ensembl preview site (Pre!Ensembl; http://pre.ensembl.org) with preliminary support. The past year has also seen improvements across the project.


Subject(s)
Databases, Genetic , Genomics , Animals , Gene Expression Regulation , Genetic Variation , Humans , Mice , Molecular Sequence Annotation , Rats
7.
Nucleic Acids Res ; 39(Database issue): D800-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21045057

ABSTRACT

The Ensembl project (http://www.ensembl.org) seeks to enable genomic science by providing high quality, integrated annotation on chordate and selected eukaryotic genomes within a consistent and accessible infrastructure. All supported species include comprehensive, evidence-based gene annotations and a selected set of genomes includes additional data focused on variation, comparative, evolutionary, functional and regulatory annotation. The most advanced resources are provided for key species including human, mouse, rat and zebrafish reflecting the popularity and importance of these species in biomedical research. As of Ensembl release 59 (August 2010), 56 species are supported of which 5 have been added in the past year. Since our previous report, we have substantially improved the presentation and integration of both data of disease relevance and the regulatory state of different cell types.


Subject(s)
Databases, Genetic , Genomics , Animals , Genetic Variation , Humans , Mice , Molecular Sequence Annotation , Rats , Regulatory Sequences, Nucleic Acid , Software , Zebrafish/genetics
8.
Nucleic Acids Res ; 38(Database issue): D557-62, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19906699

ABSTRACT

Ensembl (http://www.ensembl.org) integrates genomic information for a comprehensive set of chordate genomes with a particular focus on resources for human, mouse, rat, zebrafish and other high-value sequenced genomes. We provide complete gene annotations for all supported species in addition to specific resources that target genome variation, function and evolution. Ensembl data is accessible in a variety of formats including via our genome browser, API and BioMart. This year marks the tenth anniversary of Ensembl and in that time the project has grown with advances in genome technology. As of release 56 (September 2009), Ensembl supports 51 species including marmoset, pig, zebra finch, lizard, gorilla and wallaby, which were added in the past year. Major additions and improvements to Ensembl since our previous report include the incorporation of the human GRCh37 assembly, enhanced visualisation and data-mining options for the Ensembl regulatory features and continued development of our software infrastructure.


Subject(s)
Computational Biology/methods , Databases, Genetic , Databases, Nucleic Acid , Access to Information , Animals , Computational Biology/trends , Databases, Protein , Genetic Variation , Genomics/methods , Humans , Information Storage and Retrieval/methods , Internet , Protein Structure, Tertiary , Software , Species Specificity
9.
Proc Natl Acad Sci U S A ; 99(23): 15217-21, 2002 Nov 12.
Article in English | MEDLINE | ID: mdl-12403830

ABSTRACT

The sphinganine analog mycotoxin, AAL-toxin, induces a death process in plant and animal cells that shows apoptotic morphology. In nature, the AAL-toxin is the primary determinant of the Alternaria stem canker disease of tomato, thus linking apoptosis to this disease caused by Alternaria alternata f. sp. lycopersici. The product of the baculovirus p35 gene is a specific inhibitor of a class of cysteine proteases termed caspases, and naturally functions in infected insects. Transgenic tomato plants bearing the p35 gene were protected against AAL-toxin-induced death and pathogen infection. Resistance to the toxin and pathogen co-segregated with the expression of the p35 gene through the T3 generation, as did resistance to A. alternata, Colletotrichum coccodes, and Pseudomonas syringae pv. tomato. The p35 gene, stably transformed into tomato roots by Agrobacterium rhizogenes, protected roots against a 30-fold greater concentration of AAL-toxin than control roots tolerated. Transgenic expression of a p35 binding site mutant (DQMD to DRIL), inactive against animal caspases-3, did not protect against AAL-toxin. These results indicate that plants possess a protease with substrate-site specificity that is functionally equivalent to certain animal caspases. A biological conclusion is that diverse plant pathogens co-opt apoptosis during infection, and that transgenic modification of pathways regulating programmed cell death in plants is a potential strategy for engineering broad-spectrum disease resistance in plants.


Subject(s)
Apoptosis/physiology , Baculoviridae/genetics , Genes, Viral , Solanum lycopersicum/cytology , Solanum lycopersicum/physiology , Viral Proteins/genetics , Immunity, Innate/genetics , Inhibitor of Apoptosis Proteins , Solanum lycopersicum/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...