Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Mod Pathol ; 37(7): 100519, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38777036

ABSTRACT

Follicular helper T-cell (TFH) lymphoma harbors recurrent mutations of RHOAG17V, IDH2R172, TET2, and DNMT3A. TET2 and DNMT3A mutations are the most frequently affected genes in clonal hematopoiesis (CH). The aim of our study was to investigate the frequency of CH in bone marrow biopsies (BMB) of TFH/angioimmunoblastic T-cell lymphoma (TFH-AITL) patients and its association with myeloid neoplasms. A total of 29 BMB from 22 patients with a diagnosis of TFH-AITL were analyzed by next-generation sequencing (NGS) with a custom panel. Morphologically, 5 BMB revealed that TFH-AITL infiltrates of >5% of bone marrow (BM) cellularity confirmed in 4 cases by NGS-based T-cell clonality. IDH2R172 was demonstrated only in 1 (3%) of 29, and RHOAG17V in 2 (7%) of 29 samples. TET2 and DNMT3A were identified in 24 (83%) of 29 and 17 (59%) of 29 BMB, respectively. In the parallel lymph node the frequencies of mutations were 27% (IDH2R172), 64% (RHOAG17V), 86% (TET2), and 50% (DNMT3A). TET2 and/or DNMT3A mutations identical in lymph node and BMB were present in 18 (82%) of 22 patients, regardless of BM infiltration. In 3 cases the CH mutations were detected 13, 41, and 145 months before TFH-AITL diagnosis. Cases with TET2/DNMT3A mutations and BM variant allele frequencies >40% (7/18, 39%) showed lower blood counts. However, only low platelet count was statistically significant (P = .024). Myeloid neoplasms and/or myelodysplastic syndrome-related mutations were identified in 4 cases (4/22; 18%); all with high TET2 variant allele frequencies (>40%; P = .0114). In conclusion, CH is present in 82% of TFH-AITL and can be demonstrated up to 145 months before TFH-AITL diagnosis. NGS T-cell clonality analysis is an excellent tool to confirm TFH-AITL BM infiltration. Concurrent myeloid neoplasms were identified in 18% of the cases and were associated with TET2 mutations with high allelic burden (>40%). We demonstrated that myeloid neoplasms might occur simultaneously or precede the diagnosis of TFH lymphoma.

2.
Pathologie (Heidelb) ; 43(4): 282-291, 2022 Jul.
Article in German | MEDLINE | ID: mdl-35925225

ABSTRACT

Epstein-Barr-virus-associated lymphoproliferations (EBV-LPD) constitute a wide spectrum from benign, self-limiting lymphoproliferations to malignant lymphoma. Because of the clinical and morphological heterogeneity of EBV-LPD and the high prevalence of EBV infections, knowledge of the diagnostic criteria is of great importance for the practice of diagnostic pathology. In this review, clinical and pathological characteristics of the non-malignant EBV-related LPD in patients with and without immunosuppression are presented and their current classification is discussed.EBV-LPD can be of B­cell or T/NK-cell origin. Identification of EBV latency type and information about possible (iatrogenic) immunodeficiency of the patient are critical for diagnostic evaluation and separation from malignant lymphoma. The clinical context and the detection of EBV in T­ and NK-cells are both essential for the diagnosis of EBV+ T/NK-cell LPD, which are rare in European countries.


Subject(s)
Epstein-Barr Virus Infections , Immunologic Deficiency Syndromes , Lymphoma , Lymphoproliferative Disorders , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human/genetics , Humans , Immunologic Deficiency Syndromes/complications , Killer Cells, Natural/pathology , Lymphoma/complications , Lymphoproliferative Disorders/diagnosis
3.
BMC Cancer ; 22(1): 725, 2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35780096

ABSTRACT

BACKGROUND: Metastatic soft tissue sarcoma (STS) are a heterogeneous group of malignancies which are not curable with chemotherapy alone. Therefore, understanding the molecular mechanisms of sarcomagenesis and therapy resistance remains a critical clinical need. ASPP2 is a tumor suppressor, that functions through both p53-dependent and p53-independent mechanisms. We recently described a dominant-negative ASPP2 isoform (ASPP2κ), that is overexpressed in human leukemias to promote therapy resistance. However, ASPP2κ  has never been studied in STS.  MATERIALS AND METHODS: Expression of ASPP2κ was quantified in human rhabdomyosarcoma tumors using immunohistochemistry and qRT-PCR from formalin-fixed paraffin-embedded (FFPE) and snap-frozen tissue. To study the functional role of ASPP2κ in rhabdomyosarcoma, isogenic cell lines were generated by lentiviral transduction with short RNA hairpins to silence ASPP2κ expression. These engineered cell lines were used to assess the consequences of ASPP2κ silencing on cellular proliferation, migration and sensitivity to damage-induced apoptosis. Statistical analyses were performed using Student's t-test and 2-way ANOVA. RESULTS: We found elevated ASPP2κ mRNA in different soft tissue sarcoma cell lines, representing five different sarcoma sub-entities. We found that ASSP2κ mRNA expression levels were induced in these cell lines by cell-stress. Importantly, we found that the median ASPP2κ expression level was higher in human rhabdomyosarcoma in comparison to a pool of tumor-free tissue. Moreover, ASPP2κ levels were elevated in patient tumor samples versus adjacent tumor-free tissue within individual patients. Using isogenic cell line models with silenced ASPP2κ expression, we found that suppression of ASPP2κ enhanced chemotherapy-induced apoptosis and attenuated cellular proliferation. CONCLUSION: Detection of oncogenic ASPP2κ in human sarcoma provides new insights into sarcoma tumor biology. Our data supports the notion that ASPP2κ promotes sarcomagenesis and resistance to therapy. These observations provide the rationale for further evaluation of ASPP2κ as an oncogenic driver as well as a prognostic tool and potential therapeutic target in STS.


Subject(s)
Apoptosis Regulatory Proteins , Carcinogenesis , Rhabdomyosarcoma , Sarcoma , Soft Tissue Neoplasms , Alternative Splicing , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/physiology , Humans , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/metabolism , Sarcoma/genetics , Sarcoma/metabolism , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
4.
Cancers (Basel) ; 13(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34830756

ABSTRACT

Myeloproliferative neoplasms (MPN) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) both harbor the potential to undergo myelodysplastic progression or acceleration and can transform into blast-phase MPN or MDS/MPN, a form of secondary acute myeloid leukemia (AML). Although the initiating transforming events are yet to be determined, current concepts suggest a stepwise acquisition of (additional) somatic mutations-apart from the initial driver mutations-that trigger disease evolution. In this study we molecularly analyzed paired bone marrow samples of MPN and MDS/MPN patients with known progression and compared them to a control cohort of patients with stable disease course. Cases with progression displayed from the very beginning a higher number of mutations compared to stable ones, of which mutations in five (ASXL1, DNMT3A, NRAS, SRSF2 and TP53) strongly correlated with progression and/or transformation, even if only one of these genes was mutated, and this particularly applied to MPN. TET2 mutations were found to have a higher allelic frequency than the putative driver mutation in three progressing cases ("TET2-first"), whereas two stable cases displayed a TET2-positive subclone ("TET2-second"), supporting the hypothesis that not only the sum of mutations but also their order of appearance matters in the course of disease. Our data emphasize the importance of genetic testing in MPN and MDS/MPN patients in terms of risk stratification and identification of imminent disease progression.

5.
Front Mol Biosci ; 8: 727203, 2021.
Article in English | MEDLINE | ID: mdl-34805267

ABSTRACT

Alternative splicing is a common physiologic mechanism to generate numerous distinct gene products from one gene locus, which can result in unique gene products with differing important functional outcomes depending on cell context. Aberrant alternative splicing is a hallmark of cancer that can contribute to oncogenesis and aggressiveness of the disease as well as resistance to therapy. However, aberrant splicing might also result in novel targets for cancer therapy. ASPP2 is a haplo-insufficient tumor suppressor, that functions through both p53-dependent as well as p53-independent mechanisms to enhance cell death after stress. Interestingly, the common human tumor TP53 mutations result in a loss of the binding sites to ASPP2, leading to impaired induction of apoptosis. Vice versa, attenuation of ASPP2 has been described to be associated with high-risk disease, therapy failure and poor clinical outcome especially in tumors harboring the TP53 wildtype (WT) isoform. We have recently identified a novel, dominant-negative splicing variant of ASPP2, named ASPP2κ, with oncogenic potential. Exon-skipping results in a reading-frame shift with a premature translation stop, omitting most of the ASPP2 C-terminus - which harbors the p53-binding domain. Consequently, the ASPP2-p53 interaction is abrogated, which in part impacts on oncogenesis, aggressiveness of disease and response to therapy. Since ASPP2κ has been shown in hematologic malignancies to promote tumorigenesis, we further wished to determine if aberrant ASPP2κ expression plays a role in human solid tumors. In this report, we find that ASPP2κ is frequently expressed in human colorectal tumors (CRC). Using ASPP2κ overexpressing and interference CRC models, we demonstrate a functional role of ASPP2κ in contributing to oncogenesis and resistance to therapy in CRC by 1) enhancing proliferation, 2) promoting cell migration and, 3) conferring resistance to chemotherapy induced apoptosis. Our findings have far-reaching consequences for future diagnostic and therapeutic strategies for ASPP2κ expressing colorectal cancer patients and provide proof-of-principle to further explore ASPP2κ as potential predictive marker and target for therapy in clinical trials.

6.
Virchows Arch ; 478(6): 1135-1148, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33324999

ABSTRACT

Post-transplant lymphoproliferative disorders (PTLD) occur after solid organ transplantation (SOT) or hematopoietic stem cell transplantation (HCT) and are frequently associated with Epstein-Barr virus (EBV). Because of the complex immune setup in PTLD patients, the tumor microenvironment (TME) is of particular interest to understand PTLD pathogenesis and elucidate predictive factors and possible treatment options. We present a comparative study of clinicopathological features of 48 PTLD after HCT (n = 26) or SOT (n = 22), including non-destructive (n = 6), polymorphic (n = 23), and monomorphic (n = 18) PTLD and classic Hodgkin lymphoma (n = 1). EBV was positive in 35 cases (73%). A detailed examination of the TME with image analysis-based quantification in 22 cases revealed an inflammatory TME despite underlying immunosuppression and significant differences in its density and composition depending on type of transplant, PTLD subtypes, and EBV status. Tumor-associated macrophages (TAMs) expressing CD163 (p = 0.0022) and Mannose (p = 0.0016) were enriched in PTLD after HCT. Double stains also showed differences in macrophage polarization, with more frequent M1 polarization after HCT (p = 0.0321). Higher counts for TAMs (CD163 (p = 0.0008) and cMaf (p = 0.0035)) as well as in the T cell compartment (Granzyme B (p = 0.0028), CD8 (p = 0.01), and for PD-L1 (p = 0.0305)) were observed depending on EBV status. In conclusion, despite the presence of immunosuppression, PTLD predominantly contains an inflammatory TME characterized by mostly M1-polarized macrophages and cytotoxic T cells. Status post HCT, EBV positivity, and polymorphic subtype are associated with an actively inflamed TME, indicating a specific response of the immune system. Further studies need to elucidate prognostic significance and potential therapeutic implications of the TME in PTLD.


Subject(s)
Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human/pathogenicity , Organ Transplantation/adverse effects , Transplantation, Homologous/adverse effects , Tumor Microenvironment/physiology , Adolescent , Adult , Aged , Child , Child, Preschool , Epstein-Barr Virus Infections/virology , Female , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Infant , Lymphoproliferative Disorders/pathology , Lymphoproliferative Disorders/virology , Male , Middle Aged , Young Adult
7.
Haematologica ; 106(6): 1684-1692, 2021 06 01.
Article in English | MEDLINE | ID: mdl-32381573

ABSTRACT

A subset of patients with advanced-stage classical Hodgkin Lymphoma (cHL) relapse or progress following standard treatment. Given their dismal prognosis, identifying this group of patients upfront represents an important medical need. While prior research has identified characteristics of the tumor microenvironment, which are associated with cHL outcomes, biomarkers that are developed and validated in this high-risk group are still missing. Here, we applied whole-slide image analysis (WSI), a quantitative, large-scale assessment of tumor composition that utilizes conventional histopathology slides. We conducted WSI on a study cohort with pre-treatment biopsies of 340 advanced-stage cHL patients enrolled in the HD12 and HD15 trials of the German Hodgkin Study Group (GHSG), and tested our results in in a validation cohort of 147 advanced-stage cHL patients within the GHSG HD18 trial. All patients were treated with BEACOPP-based regimens. By quantifying T cells, B cells, Hodgkin-Reed-Sternberg-cells and macrophages with WSI, 80% of all cells in the tumor tissue were identified. Crucially, low B cell count was associated with significantly reduced progression-free survival (PFS) and overall survival (OS), while T cell-, macrophage- and Hodgkin-Reed-Sternberg-cell content was not associated with the risk of progression or relapse in the study cohort. We further validated low B cell content as a prognostic factor of PFS and OS in the validation cohort and demonstrate good inter-observer agreement of WSI. WSI may represent a key tool for risk stratification of advanced-stage cHL that can easily be added to the standard diagnostic histopathology work-up.


Subject(s)
Hodgkin Disease , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , B-Lymphocytes , Hodgkin Disease/diagnosis , Hodgkin Disease/drug therapy , Humans , Neoplasm Recurrence, Local/drug therapy , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...