Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
iScience ; 27(8): 110461, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39104409

ABSTRACT

Monoclonal antibodies have revolutionized therapies, but non-immunoglobulin scaffolds are becoming compelling alternatives owing to their adaptability. Their ability to be labeled with imaging or cytotoxic compounds and to create multimeric proteins is an attractive strategy for therapeutics. Focusing on HER2, a frequently overexpressed receptor in breast cancer, this study addresses some limitations of conventional targeting moieties by harnessing the potential of these scaffolds. HER2-binding Affimers were isolated and characterized, demonstrating potency as binding reagents and efficient internalization by HER2-overexpressing cells. Affimers conjugated with cytotoxic agent achieved dose-dependent reductions in cell viability within HER2-overexpressing cell lines. Bispecific Affimers, targeting HER2 and virus-like particles, facilitated efficient internalization of virus-like particles carrying enhanced green fluorescent protein (eGFP)-encoding RNA, leading to protein expression. Anti-HER2 affibody or designed ankyrin repeat protein (DARPin) fusion constructs with the anti-VLP Affimer further underscore the adaptability of this approach. This study demonstrates the versatility of scaffolds for precise delivery of cargos into cells, advancing biotechnology and therapeutic research.

2.
J Extracell Vesicles ; 11(5): e12225, 2022 05.
Article in English | MEDLINE | ID: mdl-35585651

ABSTRACT

Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic applications require efficient cargo loading. Here, we developed new methods for CRISPR/Cas9 loading into EVs through reversible heterodimerization of Cas9-fusions with EV sorting partners. Cas9-loaded EVs were collected from engineered Expi293F cells using standard methodology, characterized using nanoparticle tracking analysis, western blotting, and transmission electron microscopy and analysed for CRISPR/Cas9-mediated functional gene editing in a Cre-reporter cellular assay. Light-induced dimerization using Cryptochrome 2 combined with CD9 or a Myristoylation-Palmitoylation-Palmitoylation lipid modification resulted in efficient loading with approximately 25 Cas9 molecules per EV and high functional delivery with 51% gene editing of the Cre reporter cassette in HEK293 and 25% in HepG2 cells, respectively. This approach was also effective for targeting knock-down of the therapeutically relevant PCSK9 gene with 6% indel efficiency in HEK293. Cas9 transfer was detergent-sensitive and associated with the EV fractions after size exclusion chromatography, indicative of EV-mediated transfer. Considering the advantages of EVs over other delivery vectors we envision that this study will prove useful for a range of therapeutic applications, including CRISPR/Cas9 mediated genome editing.


Subject(s)
Extracellular Vesicles , Gene Editing , CRISPR-Cas Systems/genetics , HEK293 Cells , Humans , Proprotein Convertase 9/genetics
3.
Curr Res Struct Biol ; 3: 19-29, 2021.
Article in English | MEDLINE | ID: mdl-34235483

ABSTRACT

Helicobacter pylori (H. pylori) uses several outer membrane proteins for adhering to its host's gastric mucosa, an important step in establishing and preserving colonization. Several adhesins (SabA, BabA, HopQ) have been characterized in terms of their three-dimensional structure. A recent addition to the growing list of outer membrane porins is LabA (LacdiNAc-binding adhesin), which is thought to bind specifically to GalNAcß1-4GlcNAc, occurring in the gastric mucosa. LabA47-496 protein expressed as His-tagged protein in the periplasm of E. coli and purified via subtractive IMAC after TEV cleavage and subsequent size exclusion chromatography, resulted in bipyramidal crystals with good diffraction properties. Here, we describe the 2.06 â€‹Å resolution structure of the exodomain of LabA from H. pylori strain J99 (PDB ID: 6GMM). Strikingly, despite the relatively low levels of sequence identity with the other three structurally characterized adhesins (20-49%), LabA shares an L-shaped fold with SabA and BabA. The 'head' region contains a 4 â€‹+ â€‹3 α-helix bundle, with a small insertion domain consisting of a short antiparallel beta sheet and an unstructured region, not resolved in the crystal structure. Sequence alignment of LabA from different strains shows a high level of conservation in the N- and C-termini, and identifies two main types based on the length of the insertion domain ('crown' region), the 'J99-type' (insertion ~31 â€‹amino acids), and the H. pylori '26695 type' (insertion ~46 â€‹amino acids). Analysis of ligand binding using Native Electrospray Ionization Mass Spectrometry (ESI-MS) together with solid phase-bound, ELISA-type assays could not confirm the originally described binding of GalNAcß1-4GlcNAc-containing oligosaccharides, in line with other recent reports, which also failed to confirm LacdiNAc binding.

4.
J Med Chem ; 64(6): 3165-3184, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33683117

ABSTRACT

Mer is a member of the TAM (Tyro3, Axl, Mer) kinase family that has been associated with cancer progression, metastasis, and drug resistance. Their essential function in immune homeostasis has prompted an interest in their role as modulators of antitumor immune response in the tumor microenvironment. Here we illustrate the outcomes of an extensive lead-generation campaign for identification of Mer inhibitors, focusing on the results from concurrent, orthogonal high-throughput screening approaches. Data mining, HT (high-throughput), and DECL (DNA-encoded chemical library) screens offered means to evaluate large numbers of compounds. We discuss campaign strategy and screening outcomes, and exemplify series resulting from prioritization of hits that were identified. Concurrent execution of HT and DECL screening successfully yielded a large number of potent, selective, and novel starting points, covering a range of selectivity profiles across the TAM family members and modes of kinase binding, and offered excellent start points for lead development.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , c-Mer Tyrosine Kinase/antagonists & inhibitors , Animals , Crystallography, X-Ray , Data Mining , Drug Discovery , Humans , Models, Molecular , c-Mer Tyrosine Kinase/chemistry , c-Mer Tyrosine Kinase/metabolism
5.
Plant Biotechnol J ; 19(4): 745-756, 2021 04.
Article in English | MEDLINE | ID: mdl-33099859

ABSTRACT

Dengue virus (DENV) is an emerging threat causing an estimated 390 million infections per year. Dengvaxia, the only licensed vaccine, may not be adequately safe in young and seronegative patients; hence, development of a safer, more effective vaccine is of great public health interest. Virus-like particles (VLPs) are a safe and very efficient vaccine strategy, and DENV VLPs have been produced in various expression systems. Here, we describe the production of DENV VLPs in Nicotiana benthamiana using transient expression. The co-expression of DENV structural proteins (SP) and a truncated version of the non-structural proteins (NSPs), lacking NS5 that contains the RNA-dependent RNA polymerase, led to the assembly of DENV VLPs in plants. These VLPs were comparable in appearance and size to VLPs produced in mammalian cells. Contrary to data from other expression systems, expression of the protein complex prM-E was not successful, and strategies used in other expression systems to improve the VLP yield did not result in increased yields in plants but, rather, increased purification difficulties. Immunogenicity assays in BALB/c mice revealed that plant-made DENV1-SP + NSP VLPs led to a higher antibody response in mice compared with DENV-E domain III displayed inside bluetongue virus core-like particles and a DENV-E domain III subunit. These results are consistent with the idea that VLPs could be the optimal approach to creating candidate vaccines against enveloped viruses.


Subject(s)
Dengue Vaccines , Immunity, Humoral , Vaccines, Virus-Like Particle , Viral Proteins/immunology , Animals , Antibodies, Neutralizing , Antibodies, Viral , Dengue Virus/genetics , Mice , Mice, Inbred BALB C , Nicotiana , Vaccines, Virus-Like Particle/genetics
6.
Biochem J ; 477(22): 4443-4452, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33119085

ABSTRACT

The activation loop (A-loop) plays a key role in regulating the catalytic activity of protein kinases. Phosphorylation in this region enhances the phosphoryl transfer rate of the kinase domain and increases its affinity for ATP. Furthermore, the A-loop possesses autoinhibitory functions in some kinases, where it collapses onto the protein surface and blocks substrate binding when unphosphorylated. Due to its flexible nature, the A-loop is usually disordered and untraceable in kinase domain crystal structures. The resulting lack of structural information is regrettable as it impedes the design of drug A-loop contacts, which have proven favourable in multiple cases. Here, we characterize the binding with A-loop engagement between type 1.5 kinase inhibitor 'example 172' (EX172) and Mer tyrosine kinase (MerTK). With the help of crystal structures and binding kinetics, we portray how the recruitment of the A-loop elicits a two-step binding mechanism which results in a drug-target complex characterized by high affinity and long residence time. In addition, the type 1.5 compound possesses excellent kinome selectivity and a remarkable preference for the phosphorylated over the dephosphorylated form of MerTK. We discuss these unique characteristics in the context of known type 1 and type 2 inhibitors and highlight opportunities for future kinase inhibitor design.


Subject(s)
Adenosine Triphosphate/chemistry , Protein Kinase Inhibitors/chemistry , c-Mer Tyrosine Kinase/antagonists & inhibitors , c-Mer Tyrosine Kinase/chemistry , Humans , Protein Structure, Secondary
7.
Sci Transl Med ; 12(541)2020 04 29.
Article in English | MEDLINE | ID: mdl-32350132

ABSTRACT

Gastrointestinal stromal tumor (GIST) is the most common human sarcoma driven by mutations in KIT or platelet-derived growth factor α (PDGFRα). Although first-line treatment, imatinib, has revolutionized GIST treatment, drug resistance due to acquisition of secondary KIT/PDGFRα mutations develops in a majority of patients. Second- and third-line treatments, sunitinib and regorafenib, lack activity against a plethora of mutations in KIT/PDGFRα in GIST, with median time to disease progression of 4 to 6 months and inhibition of vascular endothelial growth factor receptor 2 (VEGFR2) causing high-grade hypertension. Patients with GIST have an unmet need for a well-tolerated drug that robustly inhibits a range of KIT/PDGFRα mutations. Here, we report the discovery and pharmacological characterization of AZD3229, a potent and selective small-molecule inhibitor of KIT and PDGFRα designed to inhibit a broad range of primary and imatinib-resistant secondary mutations seen in GIST. In engineered and GIST-derived cell lines, AZD3229 is 15 to 60 times more potent than imatinib in inhibiting KIT primary mutations and has low nanomolar activity against a wide spectrum of secondary mutations. AZD3229 causes durable inhibition of KIT signaling in patient-derived xenograft (PDX) models of GIST, leading to tumor regressions at doses that showed no changes in arterial blood pressure (BP) in rat telemetry studies. AZD3229 has a superior potency and selectivity profile to standard of care (SoC) agents-imatinib, sunitinib, and regorafenib, as well as investigational agents, avapritinib (BLU-285) and ripretinib (DCC-2618). AZD3229 has the potential to be a best-in-class inhibitor for clinically relevant KIT/PDGFRα mutations in GIST.


Subject(s)
Antineoplastic Agents , Gastrointestinal Stromal Tumors , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Humans , Mutation , Naphthyridines , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-kit/genetics , Pyrazoles , Pyrroles , Rats , Receptor, Platelet-Derived Growth Factor alpha/genetics , Triazines , Urea/analogs & derivatives , Vascular Endothelial Growth Factor A
8.
Biochem J ; 477(1): 275-284, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31868900

ABSTRACT

When activated by amino acid starvation, the stress sensing protein kinase GCN2 phosphorylates the eukaryotic initiation factor 2 alpha, inhibiting translation to conserve energy and facilitate cell survival. Amino acid starvation, particularly of tryptophan and arginine, affects immune tolerance by suppressing differentiation and proliferation of T-cells via activation of GCN2 kinase. In addition, the GCN2 pathway mediates cancer survival directly within the context of metabolic stress. Here, we report the first crystal structures of the human GCN2 kinase domain (KD) in complex with two inhibitors of different size, shape, and chemical scaffold. Three novel activation loop conformations representative of different activation states of the kinase are described. In addition, a novel dimerization organization for GCN2 is observed. This arrangement is consistent with the hypothesis that the GCN2 KD forms an antiparallel inactive dimer until uncharged tRNA binds to it and triggers conformational changes that shift the equilibrium to the active parallel dimer.


Subject(s)
Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Crystallography, X-Ray , Eukaryotic Initiation Factor-2/metabolism , Humans , Protein Binding , Protein Domains , Protein Multimerization , RNA, Transfer/metabolism
9.
Nanomedicine (Lond) ; 14(21): 2799-2814, 2019 11.
Article in English | MEDLINE | ID: mdl-31724479

ABSTRACT

Aim: Extracellular vesicles (EVs) are desirable delivery vehicles for therapeutic cargoes. We aimed to load EVs with Cre recombinase protein and determine whether functional delivery to cells could be improved by using endosomal escape enhancing compounds. Materials & methods: Overexpressed CreFRB protein was actively loaded into EVs by rapalog-induced dimerization to CD81FKBP, or passively loaded by overexpression in the absence of rapalog. Functional delivery of CreFRB was analysed using a HEK293 Cre reporter cell line in the absence and presence of endosomal escape enhancing compounds. Results: The EVs loaded with CreFRB by both active and passive mechanisms were able to deliver functional CreFRB to recipient cells only in the presence of endosomal escape enhancing compounds chloroquine and UNC10217938A. Conclusion: The use of endosomal escape enhancing compounds in conjunction with EVs loaded with therapeutic cargoes may improve efficacy of future EV based therapeutics.


Subject(s)
Endosomes/metabolism , Extracellular Vesicles/chemistry , Integrases/chemistry , Nanocapsules/chemistry , Biological Transport , Chloroquine/chemistry , Chloroquine/metabolism , Drug Liberation , Enhancer Elements, Genetic , Extracellular Vesicles/metabolism , Gene Expression , HEK293 Cells , Humans , Integrases/genetics , Integrases/metabolism , Particle Size , Protein Multimerization , Signal Transduction
10.
Protein Expr Purif ; 163: 105446, 2019 11.
Article in English | MEDLINE | ID: mdl-31271862

ABSTRACT

Helicobacter pylori is a pathogenic microorganism infecting approximately 50% of the global population, and establishes life-long colonization despite the hostile stomach environment. H. pylori employs a wide range of outer membrane proteins (adhesins) for epithelial attachment, which specifically bind to glycans or non-carbohydrate structures expressed on the gastric epithelium. A recently described adhesin from H. pylori is LabA, named after its ability to bind to a disaccharide present in gastric mucus (LacdiNAc-specific adhesin). Here, we describe the recombinant expression of LabA from H. pylori strains J99 and 26695 in E. coli. High yields of recombinant LabA were obtained using periplasmic expression. We found that the addition of a C-terminal hexalysine (6K) tag enhanced the thermal stability of LabA without affecting its secondary structure, using differential scanning fluorimetry and circular dichroism spectroscopy. In contrast to our previous report for another H. pylori adhesin (BabA), the 6K tag did not enhance recombinant protein yield or solubility. Both versions of LabA, with or without the 6K tag, were expressed and isolated from the periplasmic space of Escherichia coli, with a surprisingly high yield of at least 40 mg/L for each independent preparation, following a two-step purification protocol. The proteins were analyzed with mass spectrometry (MS). Unlike its reported effect on stability of BabA, the 6K tag did not appear to protect the N-term of recombinant LabA from partial periplasmic degradation.


Subject(s)
Adhesins, Bacterial/metabolism , Helicobacter pylori/metabolism , Adhesins, Bacterial/genetics , Adhesins, Bacterial/isolation & purification , Cloning, Molecular , Escherichia coli , Helicobacter pylori/genetics , Hexosaminidase A/metabolism , Lactose/analogs & derivatives , Lactose/metabolism , Lysine/metabolism , Mass Spectrometry , Models, Molecular , Periplasm , Protein Binding , Protein Stability , Protein Structure, Secondary
11.
Nat Commun ; 10(1): 2607, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31197133

ABSTRACT

Inhibiting the RAS oncogenic protein has largely been through targeting the switch regions that interact with signalling effector proteins. Here, we report designed ankyrin repeat proteins (DARPins) macromolecules that specifically inhibit the KRAS isoform by binding to an allosteric site encompassing the region around KRAS-specific residue histidine 95 at the helix α3/loop 7/helix α4 interface. We show that these DARPins specifically inhibit KRAS/effector interactions and the dependent downstream signalling pathways in cancer cells. Binding by the DARPins at that region influences KRAS/effector interactions in different ways, including KRAS nucleotide exchange and inhibiting KRAS dimerization at the plasma membrane. These results highlight the importance of targeting the α3/loop 7/α4 interface, a previously untargeted site in RAS, for specifically inhibiting KRAS function.


Subject(s)
Allosteric Site/drug effects , Antineoplastic Agents/pharmacology , Drug Design , Neoplasms/drug therapy , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Ankyrin Repeat , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Drug Screening Assays, Antitumor , HEK293 Cells , Histidine/metabolism , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , Neoplasms/genetics , Neoplasms/pathology , Peptide Library , Protein Binding/drug effects , Protein Binding/genetics , Protein Multimerization/drug effects , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction/drug effects
12.
J Med Chem ; 61(19): 8797-8810, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30204441

ABSTRACT

While the treatment of gastrointestinal stromal tumors (GISTs) has been revolutionized by the application of targeted tyrosine kinase inhibitors capable of inhibiting KIT-driven proliferation, diverse mutations to this kinase drive resistance to established therapies. Here we describe the identification of potent pan-KIT mutant kinase inhibitors that can be dosed without being limited by the tolerability issues seen with multitargeted agents. This effort focused on identification and optimization of an existing kinase scaffold through the use of structure-based design. Starting from a series of previously reported phenoxyquinazoline and quinoline based inhibitors of the tyrosine kinase PDGFRα, potency against a diverse panel of mutant KIT driven Ba/F3 cell lines was optimized, with a particular focus on reducing activity against a KDR driven cell model in order to limit the potential for hypertension commonly seen in second and third line GIST therapies. AZD3229 demonstrates potent single digit nM growth inhibition across a broad cell panel, with good margin to KDR-driven effects. Selectivity over KDR can be rationalized predominantly by the interaction of water molecules with the protein and ligand in the active site, and its kinome selectivity is similar to the best of the approved GIST agents. This compound demonstrates excellent cross-species pharmacokinetics, shows strong pharmacodynamic inhibition of target, and is active in several in vivo models of GIST.


Subject(s)
Drug Discovery , Gastrointestinal Stromal Tumors/drug therapy , Mutant Proteins/antagonists & inhibitors , Mutation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Quinazolines/chemistry , Quinazolines/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/pathology , Gastrointestinal Stromal Tumors/metabolism , Gastrointestinal Stromal Tumors/pathology , Humans , Models, Molecular , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Conformation , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Quinazolines/pharmacokinetics , Tissue Distribution , Triazoles/pharmacokinetics , Tumor Cells, Cultured
13.
Sci Rep ; 8(1): 5730, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29636530

ABSTRACT

Extracellular vesicles (EVs) have important roles in physiology, pathology, and more recently have been identified as efficient carriers of therapeutic cargoes. For efficient study of EVs, a single-step, rapid and scalable isolation strategy is necessary. Chromatography techniques are widely used for isolation of biological material for clinical applications and as EVs have a net negative charge, anion exchange chromatography (AIEX) is a strong candidate for column based EV isolation. We isolated EVs by AIEX and compared them to EVs isolated by ultracentrifugation (UC) and tangential flow filtration (TFF). EVs isolated by AIEX had comparable yield, EV marker presence, size and morphology to those isolated by UC and had decreased protein and debris contamination as compared to TFF purified EVs. An improved AIEX protocol allowing for higher flow rates and step elution isolated 2.4*1011 EVs from 1 litre of cell culture supernatant within 3 hours and removed multiple contaminating proteins. Importantly AIEX isolated EVs from different cell lines including HEK293T, H1299, HCT116 and Expi293F cells. The AIEX protocol described here can be used to isolate and enrich intact EVs in a rapid and scalable manner and shows great promise for further use in the field for both research and clinical purposes.


Subject(s)
Cell Fractionation , Chromatography, Ion Exchange , Extracellular Vesicles , Subcellular Fractions , Cell Fractionation/methods , Chromatography, Ion Exchange/methods , Filtration , Humans , Ultracentrifugation
14.
Nat Commun ; 8: 16111, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28706291

ABSTRACT

Ras mutations are the oncogenic drivers of many human cancers and yet there are still no approved Ras-targeted cancer therapies. Inhibition of Ras nucleotide exchange is a promising new approach but better understanding of this mechanism of action is needed. Here we describe an antibody mimetic, DARPin K27, which inhibits nucleotide exchange of Ras. K27 binds preferentially to the inactive Ras GDP form with a Kd of 4 nM and structural studies support its selectivity for inactive Ras. Intracellular expression of K27 significantly reduces the amount of active Ras, inhibits downstream signalling, in particular the levels of phosphorylated ERK, and slows the growth in soft agar of HCT116 cells. K27 is a potent, non-covalent inhibitor of nucleotide exchange, showing consistent effects across different isoforms of Ras, including wild-type and oncogenic mutant forms.


Subject(s)
Antibodies/chemistry , ras Proteins/antagonists & inhibitors , Ankyrin Repeat , Antibodies/immunology , Antibodies/pharmacology , Cell Proliferation/drug effects , Drug Design , HCT116 Cells , HEK293 Cells , Humans , Molecular Structure , Molecular Targeted Therapy , ras Proteins/immunology
15.
ACS Chem Biol ; 12(6): 1499-1503, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28459525

ABSTRACT

Although a previously developed bump-hole approach has proven powerful in generating specific inhibitors for mapping functions of protein kinases, its application is limited by the intolerance of the large-to-small mutation by certain kinases and the inability to control two kinases separately in the same cells. Herein, we describe the development of an alternative chemical-genetic approach to overcome these limitations. Our approach features the use of an engineered cysteine residue at a particular position as a reactive feature to sensitize a kinase of interest to selective covalent blockade by electrophilic inhibitors and is thus termed the Ele-Cys approach. We successfully applied the Ele-Cys approach to identify selective covalent inhibitors of a receptor tyrosine kinase EphB1 and solved cocrystal structures to determine the mode of covalent binding. Importantly, the Ele-Cys and bump-hole approaches afforded orthogonal inhibition of two distinct kinases in the cell, opening the door to their combined use in the study of multikinase signaling pathways.


Subject(s)
Protein Engineering/methods , Protein Kinase Inhibitors , Receptor, EphB1/antagonists & inhibitors , Animals , Binding Sites , Crystallography, X-Ray , Cysteine/genetics , Humans , Molecular Structure , Protein Binding , Protein-Tyrosine Kinases/antagonists & inhibitors , Structure-Activity Relationship
16.
J Am Chem Soc ; 138(33): 10554-60, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27478969

ABSTRACT

Erythropoietin-producing human hepatocellular carcinoma (Eph) receptor tyrosine kinases (RTKs) regulate a variety of dynamic cellular events, including cell protrusion, migration, proliferation, and cell-fate determination. Small-molecule inhibitors of Eph kinases are valuable tools for dissecting the physiological and pathological roles of Eph. However, there is a lack of small-molecule inhibitors that are selective for individual Eph isoforms due to the high homology within the family. Herein, we report the development of the first potent and specific inhibitors of a single Eph isoform, EphB3. Through structural bioinformatic analysis, we identified a cysteine in the hinge region of the EphB3 kinase domain, a feature that is not shared with any other human kinases. We synthesized and characterized a series of electrophilic quinazolines to target this unique, reactive feature in EphB3. Some of the electrophilic quinazolines selectively and potently inhibited EphB3 both in vitro and in cells. Cocrystal structures of EphB3 in complex with two quinazolines confirmed the covalent linkage between the protein and the inhibitors. A "clickable" version of an optimized inhibitor was created and employed to verify specific target engagement in the whole proteome and to probe the extent and kinetics of target engagement of existing EphB3 inhibitors. Furthermore, we demonstrate that the autophosphorylation of EphB3 within the juxtamembrane region occurs in trans using a specific inhibitor. These exquisitely specific inhibitors will facilitate the dissection of EphB3's role in various biological processes and disease contribution.


Subject(s)
Drug Design , Protein Kinase Inhibitors/pharmacology , Receptor, EphB3/antagonists & inhibitors , Amino Acid Sequence , HEK293 Cells , Humans , Models, Molecular , Phosphorylation/drug effects , Protein Conformation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Receptor, EphB3/chemistry , Receptor, EphB3/metabolism
17.
Cancer Res ; 76(3): 724-35, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26637668

ABSTRACT

MLK4 is a member of the mixed-lineage family of kinases that regulate the JNK, p38, and ERK kinase signaling pathways. MLK4 mutations have been identified in various human cancers, including frequently in colorectal cancer, where their function and pathobiological importance have been uncertain. In this study, we assessed the functional consequences of MLK4 mutations in colon tumorigenesis. Biochemical data indicated that a majority of MLK4 mutations are loss-of-function (LOF) mutations that can exert dominant-negative effects. In seeking to understand the abrogated activity of these mutants, we elucidated a new MLK4 catalytic domain structure. To determine whether MLK4 is required to maintain tumorigenic phenotypes, we reconstituted its signaling axis in colon cancer cells harboring MLK4-inactivating mutations. We found that restoring MLK4 activity reduced cell viability, proliferation, and colony formation in vitro and delayed tumor growth in vivo. Mechanistic investigations established that restoring the function of MLK4 selectively induced the JNK pathway and its downstream targets, cJUN, ATF3, and the cyclin-dependent kinase inhibitors CDKN1A and CDKN2B. Our work indicates that MLK4 is a novel tumor-suppressing kinase harboring frequent LOF mutations that lead to diminished signaling in the JNK pathway and enhanced proliferation in colon cancer.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System/genetics , Animals , Carcinogenesis , Colonic Neoplasms/pathology , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Mutation , Signal Transduction , Xenograft Model Antitumor Assays
18.
Sci Adv ; 1(7): e1500315, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26601230

ABSTRACT

Helicobacter pylori is a leading cause of peptic ulceration and gastric cancer worldwide. To achieve colonization of the stomach, this Gram-negative bacterium adheres to Lewis(b) (Le(b)) antigens in the gastric mucosa using its outer membrane protein BabA. Structural information for BabA has been elusive, and thus, its molecular mechanism for recognizing Le(b) antigens remains unknown. We present the crystal structure of the extracellular domain of BabA, from H. pylori strain J99, in the absence and presence of Le(b) at 2.0- and 2.1-Å resolutions, respectively. BabA is a predominantly α-helical molecule with a markedly kinked tertiary structure containing a single, shallow Le(b) binding site at its tip within a ß-strand motif. No conformational change occurs in BabA upon binding of Le(b), which is characterized by low affinity under acidic [K D (dissociation constant) of ~227 µM] and neutral (K D of ~252 µM) conditions. Binding is mediated by a network of hydrogen bonds between Le(b) Fuc1, GlcNAc3, Fuc4, and Gal5 residues and a total of eight BabA amino acids (C189, G191, N194, N206, D233, S234, S244, and T246) through both carbonyl backbone and side-chain interactions. The structural model was validated through the generation of two BabA variants containing N206A and combined D233A/S244A substitutions, which result in a reduction and complete loss of binding affinity to Le(b), respectively. Knowledge of the molecular basis of Le(b) recognition by BabA provides a platform for the development of therapeutics targeted at inhibiting H. pylori adherence to the gastric mucosa.

19.
J Med Chem ; 58(5): 2265-74, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25695162

ABSTRACT

Constitutively active mutant KRas displays a reduced rate of GTP hydrolysis via both intrinsic and GTPase-activating protein-catalyzed mechanisms, resulting in the perpetual activation of Ras pathways. We describe a fragment screening campaign using X-ray crystallography that led to the discovery of three fragment binding sites on the Ras:SOS complex. The identification of tool compounds binding at each of these sites allowed exploration of two new approaches to Ras pathway inhibition by stabilizing or covalently modifying the Ras:SOS complex to prevent the reloading of Ras with GTP. Initially, we identified ligands that bound reversibly to the Ras:SOS complex in two distinct sites, but these compounds were not sufficiently potent inhibitors to validate our stabilization hypothesis. We conclude by demonstrating that covalent modification of Cys118 on Ras leads to a novel mechanism of inhibition of the SOS-mediated interaction between Ras and Raf and is effective at inhibiting the exchange of labeled GDP in both mutant (G12C and G12V) and wild type Ras.


Subject(s)
Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/metabolism , SOS1 Protein/metabolism , Small Molecule Libraries/pharmacology , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Structure , Mutation/genetics , Protein Binding/drug effects , Protein Conformation , Proto-Oncogene Proteins p21(ras)/genetics , SOS1 Protein/chemistry , Small Molecule Libraries/chemistry
20.
Structure ; 22(12): 1764-1774, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25465127

ABSTRACT

The fibroblast growth factor receptor (FGFR) family of receptor tyrosine kinases has been implicated in a wide variety of cancers. Despite a high level of sequence homology in the ATP-binding site, the majority of reported inhibitors are selective for the FGFR1-3 isoforms and display much reduced potency toward FGFR4, an exception being the Bcr-Abl inhibitor ponatinib. Here we present the crystal structure of the FGFR4 kinase domain and show that both FGFR1 and FGFR4 kinase domains in complex with ponatinib adopt a DFG-out activation loop conformation. Comparison with the structure of FGFR1 in complex with the candidate drug AZD4547, combined with kinetic characterization of the binding of ponatinib and AZD4547 to FGFR1 and FGFR4, sheds light on the observed differences in selectivity profiles and provides a rationale for developing FGFR4-selective inhibitors.


Subject(s)
Benzamides/pharmacology , Imidazoles/pharmacology , Piperazines/pharmacology , Protein Isoforms/metabolism , Pyrazoles/pharmacology , Pyridazines/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Cell Line , Escherichia coli , Ligands , Phosphorylation/drug effects , Protein Binding , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL