Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8(1): 1206, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29089518

ABSTRACT

Erythromycin, avermectin and rapamycin are clinically useful polyketide natural products produced on modular polyketide synthase multienzymes by an assembly-line process in which each module of enzymes in turn specifies attachment of a particular chemical unit. Although polyketide synthase encoding genes have been successfully engineered to produce novel analogues, the process can be relatively slow, inefficient, and frequently low-yielding. We now describe a method for rapidly recombining polyketide synthase gene clusters to replace, add or remove modules that, with high frequency, generates diverse and highly productive assembly lines. The method is exemplified in the rapamycin biosynthetic gene cluster where, in a single experiment, multiple strains were isolated producing new members of a rapamycin-related family of polyketides. The process mimics, but significantly accelerates, a plausible mechanism of natural evolution for modular polyketide synthases. Detailed sequence analysis of the recombinant genes provides unique insight into the design principles for constructing useful synthetic assembly-line multienzymes.


Subject(s)
Biosynthetic Pathways/genetics , Evolution, Molecular , Genetic Variation , Multigene Family , Bioengineering , Polyketide Synthases/genetics , Sirolimus/chemistry , Sirolimus/metabolism
2.
J Org Chem ; 80(5): 2634-40, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25654215

ABSTRACT

The reaction of tryptamine and (2-oxocyclohexyl)acetic acid can be catalyzed by 3,3'-bis(triphenylsilyl)-1,1'-bi-2-naphthol phosphoric acid to give an asymmetric ß-carboline. This reaction was first studied by Holloway et al. ( Org. Lett. 2010 , 12 , 4720 - 4723 ), but their mechanistic work did not explain the high stereoselectivity achieved. This study uses density functional theory and hybrid quantum mechanics/molecular mechanics calculations to investigate this reaction and provide a model to explain its outcome. The step leading to diastereo- and enantioselectivity is an asymmetric Pictet-Spengler reaction involving an N-acyliminium ion bound to the catalyst in a bidentate fashion. This interaction occurs via hydrogen bonds between the two terminal oxygen atoms of the catalyst phosphate group and the hydrogen atoms at N and C2 of the substrate indole group. These bonds hold the transition structure rigidly and thus allow the catalyst triphenylsilyl groups to influence the enantioselectivity.

3.
Structure ; 23(1): 80-92, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25533489

ABSTRACT

Binding of the chromatin remodeling complex NoRC to RNA complementary to the rDNA promoter mediates transcriptional repression. TIP5, the largest subunit of NoRC, is involved in recruitment to rDNA by interactions with promoter-bound TTF-I, pRNA, and acetylation of H4K16. TIP5 domains that recognize posttranslational modifications on histones are essential for recruitment of NoRC to chromatin, but how these reader modules recognize site-specific histone tails has remained elusive. Here, we report crystal structures of PHD zinc finger and bromodomains from human TIP5 and BAZ2B in free form and bound to H3 and/or H4 histones. PHD finger functions as an independent structural module in recognizing unmodified H3 histone tails, and the bromodomain prefers H3 and H4 acetylation marks followed by a key basic residue, KacXXR. Further low-resolution analyses of PHD-bromodomain modules provide molecular insights into their trans histone tail recognition, required for nucleosome recruitment and transcriptional repression of the NoRC complex.


Subject(s)
Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , Histones/metabolism , Protein Interaction Domains and Motifs , Amino Acid Sequence , Chromosomal Proteins, Non-Histone/chemistry , Histones/chemistry , Humans , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Quaternary , Sequence Homology, Amino Acid , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...