Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Mater Chem A Mater ; 12(15): 9184-9199, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38633215

ABSTRACT

A limiting factor for solid polymer electrolyte (SPE)-based Li-batteries is the functionality of the electrolyte decomposition layer that is spontaneously formed at the Li metal anode. A deeper understanding of this layer will facilitate its improvement. This study investigates three SPEs - polyethylene oxide:lithium tetrafluoroborate (PEO:LiBF4), polyethylene oxide:lithium bis(oxalate)borate (PEO:LiBOB), and polyethylene oxide:lithium difluoro(oxalato)borate (PEO:LiDFOB) - using a combination of electrochemical impedance spectroscopy (EIS), galvanostatic cycling, in situ Li deposition photoelectron spectroscopy (PES), and ab initio molecular dynamics (AIMD) simulations. Through this combination, the cell performance of PEO:LiDFOB can be connected to the initial SPE decomposition at the anode interface. It is found that PEO:LiDFOB had the highest capacity retention, which is correlated to having the least decomposition at the interface. This indicates that the lower SPE decomposition at the interface still creates a more effective decomposition layer, which is capable of preventing further electrolyte decomposition. Moreover, the PES results indicate formation of polyethylene in the SEI in cells based on PEO electrolytes. This is supported by AIMD that shows a polyethylene formation pathway through free-radical polymerization of ethylene.

2.
J Phys Chem Lett ; 15(14): 3721-3727, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38546374

ABSTRACT

The understanding of the interfacial properties in perovskite devices under irradiation is crucial for their engineering. In this study we show how the electronic structure of the interface between CsPbBr3 perovskite nanocrystals (PNCs) and Au is affected by irradiation of X-rays, near-infrared (NIR), and ultraviolet (UV) light. The effects of X-ray and light exposure could be differentiated by employing low-dose X-ray photoelectron spectroscopy (XPS). Apart from the common degradation product of metallic lead (Pb0), a new intermediate component (Pbint) was identified in the Pb 4f XPS spectra after exposure to high intensity X-rays or UV light. The Pbint component is determined to be monolayer metallic Pb on-top of the Au substrate from underpotential deposition (UPD) of Pb induced from the breaking of the perovskite structure allowing for migration of Pb2+.

3.
ACS Appl Mater Interfaces ; 15(25): 30935-30943, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37319383

ABSTRACT

Blatter radical derivatives are very attractive due to their potential applications, ranging from batteries to quantum technologies. In this work, we focus on the latest insights regarding the fundamental mechanisms of radical thin film (long-term) degradation, by comparing two Blatter radical derivatives. We find that the interaction with different contaminants (such as atomic H, Ar, N, and O and molecular H2, N2, O2, H2O, and NH2) affects the chemical and magnetic properties of the thin films upon air exposure. Also, the radical-specific site, where the contaminant interaction takes place, plays a role. Atomic H and NH2 are detrimental to the magnetic properties of Blatter radicals, while the presence of molecular water influences more specifically the magnetic properties of the diradical thin films, and it is believed to be the major cause of the shorter diradical thin film lifetime in air.

4.
Molecules ; 27(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36557966

ABSTRACT

Electron spectroscopy with the unprecedented transmission of angle-resolved time-of-flight detection, in combination with pulsed X-ray sources, brings new impetus to functional materials science. We showcase recent developments towards chemical sensitivity from electron spectroscopy for chemical analysis and structural information from photoelectron diffraction using the phase transition properties of 1T-TaS2. Our development platform is the SurfaceDynamics instrument located at the Femtoslicing facility at BESSY II, where femtosecond and picosecond X-ray pulses can be generated and extracted. The scientific potential is put into perspective to the current rapidly developing pulsed X-ray source capabilities from Lasers and Free-Electron Lasers.

5.
Nat Commun ; 13(1): 4132, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35840603

ABSTRACT

Fermi surfaces are essential for predicting, characterizing and controlling the properties of crystalline metals and semiconductors. Angle-resolved photoemission spectroscopy (ARPES) is the only technique directly probing the Fermi surface by measuring the Fermi momenta (kF) from energy- and angular distribution of photoelectrons dislodged by monochromatic light. Existing apparatus is able to determine a number of kF -vectors simultaneously, but direct high-resolution 3D Fermi surface mapping remains problematic. As a result, no such datasets exist, strongly limiting our knowledge about the Fermi surfaces. Here we show that using a simpler instrumentation it is possible to perform 3D-mapping within a very short time interval and with very high resolution. We present the first detailed experimental 3D Fermi surface as well as other experimental results featuring advantages of our technique. In combination with various light sources our methodology and instrumentation offer new opportunities for high-resolution ARPES in the physical and life sciences.

6.
J Phys Chem C Nanomater Interfaces ; 126(10): 5036-5045, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35330758

ABSTRACT

Hexacene, composed of six linearly fused benzene rings, is an organic semiconductor material with superior electronic properties. The fundamental understanding of the electronic and chemical properties is prerequisite to any possible application in devices. We investigate the orientation and interface properties of highly ordered hexacene monolayers on Ag(110) and Cu(110) with X-ray photoemission spectroscopy (XPS), photoemission orbital tomography (POT), X-ray absorption spectroscopy (XAS), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT). We find pronounced differences in the structural arrangement of the molecules and the electronic properties at the metal/organic interfaces for the two substrates. While on Cu(110) the molecules adsorb with their long molecular axis parallel to the high symmetry substrate direction, on Ag(110), hexacene adsorbs in an azimuthally slightly rotated geometry with respect to the metal rows of the substrate. In both cases, molecular planes are oriented parallel to the substrate. A pronounced charge transfer from both substrates to different molecular states affects the effective charge of different C atoms of the molecule. Through analysis of experimental and theoretical data, we found out that on Ag(110) the LUMO of the molecule is occupied through charge transfer from the metal, whereas on Cu(110) even the LUMO+1 receives a charge. Interface dipoles are determined to a large extent by the push-back effect, which are also found to differ significantly between 6A/Ag(110) and 6A/Cu(110).

7.
Langmuir ; 37(36): 10750-10761, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34464137

ABSTRACT

Organic bilayer systems and heterostructures are of enormous importance for optoelectronic devices. We study interface properties and the structural ordering of cobalt phthalocyanine (CoPc) on a highly ordered monolayer hexa-peri-hexabenzocoronene (HBC), grown on Au(111), using photoemission, X-ray absorption, scanning tunneling microscopy, and low-energy electron diffraction. A charge transfer between CoPc and the gold substrate is almost completely prevented by the HBC intermediate layer. We show that HBC acts as a template for the initial growth of CoPc molecules. After annealing to 630 K, a molecular exchange takes place, resulting in a coexistence of domains of both CoPc and HBC molecules on the surface.

8.
Adv Mater ; 33(29): e2008677, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34032324

ABSTRACT

Electronic charge rearrangement between components of a heterostructure is the fundamental principle to reach the electronic ground state. It is acknowledged that the density of state distribution of the components governs the amount of charge transfer, but a notable dependence on temperature is not yet considered, particularly for weakly interacting systems. Here, it is experimentally observed that the amount of ground-state charge transfer in a van der Waals heterostructure formed by monolayer MoS2 sandwiched between graphite and a molecular electron acceptor layer increases by a factor of 3 when going from 7 K to room temperature. State-of-the-art electronic structure calculations of the full heterostructure that accounts for nuclear thermal fluctuations reveal intracomponent electron-phonon coupling and intercomponent electronic coupling as the key factors determining the amount of charge transfer. This conclusion is rationalized by a model applicable to multicomponent van der Waals heterostructures.

9.
Adv Mater ; 33(14): e2006957, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33661532

ABSTRACT

Visible light is shown to create a transient metallic S-Mo-S surface layer on bulk semiconducting p-doped indirect-bandgap 2H-MoS2 . Optically created electron-hole pairs separate in the surface band bending region of the p-doped semiconducting crystal causing a transient accumulation of electrons in the surface region. This triggers a reversible 2H-semiconductor to 1T-metal phase-transition of the surface layer. Electron-phonon coupling of the indirect-bandgap p-doped 2H-MoS2 enables this efficient pathway even at a low density of excited electrons with a distinct optical excitation threshold and saturation behavior. This mechanism needs to be taken into consideration when describing the surface properties of illuminated p-doped 2H-MoS2 . In particular, light-induced increased charge mobility and surface activation can cause and enhance the photocatalytic and photoassisted electrochemical hydrogen evolution reaction of water on 2H-MoS2 . Generally, it opens up for a way to control not only the surface of p-doped 2H-MoS2 but also related dichalcogenides and layered systems. The findings are based on the sensitivity of time-resolved electron spectroscopy for chemical analysis with photon-energy-tuneable synchrotron radiation.

10.
Chem Sci ; 11(2): 516-524, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-32190271

ABSTRACT

The incorporation of terminal alkynes into the chemical structure of persistent organic perchlorotriphenylmethyl (PTM) radicals provides new chemical tools to expand their potential applications. In this work, this is demonstrated by the chemical functionalization of two types of substrates, hydrogenated SiO2-free silicon (Si-H) and gold, and, by exploiting the click chemistry, scarcely used with organic radicals, to synthesise multifunctional systems. On one hand, the one-step functionalization of Si-H allows a light-triggered capacitance switch to be successfully achieved under electrochemical conditions. On the other hand, the click reaction between the alkyne-terminated PTM radical and a ferrocene azide derivative, used here as a model azide system, leads to a multistate electrochemical switch. The successful post-surface modification makes the self-assembled monolayers reported here an appealing platform to synthesise multifunctional systems grafted on surfaces.

11.
Chem Sci ; 11(34): 9162-9172, 2020 Aug 13.
Article in English | MEDLINE | ID: mdl-34123165

ABSTRACT

We have investigated the radical functionalization of gold surfaces with a derivative of the perchlorotriphenylmethyl (PTM) radical using two methods: by chemisorption from the radical solution and by on-surface chemical derivation from a precursor. We have investigated the obtained self-assembled monolayers by photon-energy dependent X-ray photoelectron spectroscopy. Our results show that the molecules were successfully anchored on the surfaces. We have used a robust method that can be applied to a variety of materials to assess the stability of the functionalized interface. The monolayers are characterized by air and X-ray beam stability unprecedented for films of organic radicals. Over very long X-ray beam exposure we observed a dynamic nature of the radical-Au complex. The results clearly indicate that (mono)layers of PTM radical derivatives have the necessary stability to withstand device applications.

12.
Sci Rep ; 10(1): 22438, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33384445

ABSTRACT

Time-resolved photoelectron spectroscopy can give insights into carrier dynamics and offers the possibility of element and site-specific information through the measurements of core levels. In this paper, we demonstrate that this method can access electrons dynamics in PbS quantum dots over a wide time window spanning from pico- to microseconds in a single experiment carried out at the synchrotron facility BESSY II. The method is sensitive to small changes in core level positions. Fast measurements at low pump fluences are enabled by the use of a pump laser at a lower repetition frequency than the repetition frequency of the X-ray pulses used to probe the core level electrons: Through the use of a time-resolved spectrometer, time-dependent analysis of data from all synchrotron pulses is possible. Furthermore, by picosecond control of the pump laser arrival at the sample relative to the X-ray pulses, a time-resolution limited only by the length of the X-ray pulses is achieved. Using this method, we studied the charge dynamics in thin film samples of PbS quantum dots on n-type MgZnO substrates through time-resolved measurements of the Pb 5d core level. We found a time-resolved core level shift, which we could assign to electron injection and charge accumulation at the MgZnO/PbS quantum dots interface. This assignment was confirmed through the measurement of PbS films with different thicknesses. Our results therefore give insight into the magnitude of the photovoltage generated specifically at the MgZnO/PbS interface and into the timescale of charge transport and electron injection, as well as into the timescale of charge recombination at this interface. It is a unique feature of our method that the timescale of both these processes can be accessed in a single experiment and investigated for a specific interface.

13.
Molecules ; 24(24)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847299

ABSTRACT

Interface properties of iron phthalocyanine (FePc) and perfluorinated iron phthalocyanine (FePcF16) on rutile TiO2(100) and TiO2(110) surfaces were studied using X-ray photoemission spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and low-energy electron diffraction (LEED). It is demonstrated that the interaction strength at the interfaces is considerably affected by the detailed preparation procedure. Weak interactions were observed for all studied interfaces between FePc or FePcF16 and rutile, as long as the substrate was exposed to oxygen during the annealing steps of the preparation procedure. The absence of oxygen in the last annealing step only had almost no influence on interface properties. In contrast, repeated substrate cleaning cycles performed in the absence of oxygen resulted in a more reactive, defect-rich substrate surface. On such reactive surfaces, stronger interactions were observed, including the cleavage of some C-F bonds of FePcF16.


Subject(s)
Ferrous Compounds/chemistry , Indoles/chemistry , Titanium/chemistry , Halogenation , Molecular Structure , Photoelectron Spectroscopy , Surface Properties
14.
J Chem Phys ; 150(24): 244704, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31255092

ABSTRACT

The temperature dependent dehydrogenation of naphthalene on Ni(111) has been investigated using vibrational sum-frequency generation spectroscopy, X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory with the aim of discerning the reaction mechanism and the intermediates on the surface. At 110 K, multiple layers of naphthalene adsorb on Ni(111); the first layer is a flat lying chemisorbed monolayer, whereas the next layer(s) consist of physisorbed naphthalene. The aromaticity of the carbon rings in the first layer is reduced due to bonding to the surface Ni-atoms. Heating at 200 K causes desorption of the multilayers. At 360 K, the chemisorbed naphthalene monolayer starts dehydrogenating and the geometry of the molecules changes as the dehydrogenated carbon atoms coordinate to the nickel surface; thus, the molecule tilts with respect to the surface, recovering some of its original aromaticity. This effect peaks at 400 K and coincides with hydrogen desorption. Increasing the temperature leads to further dehydrogenation and production of H2 gas, as well as the formation of carbidic and graphitic surface carbon.

15.
Phys Chem Chem Phys ; 21(27): 15072-15079, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31241108

ABSTRACT

The electronic properties of the organic/inorganic semiconductor heterojunction formed by para-sexiphenyl (6P) and three different faces of ZnO are investigated using photoelectron spectroscopy and X-ray absorption. While multilayer molecules stand almost upright with respect to the surface plane, we evidence the presence of a lying 6P interlayer, which exhibits a higher electron affinity. This is due to an energy gap narrowing because of the close vicinity of that interlayer to the higher dielectric constant ZnO and a more planar molecular conformation compared to molecules in the bulk. Both effects have a significant impact on the level alignment mechanisms at the three interfaces, i.e., surface electron push-back and Fermi level pinning. We disentangle the contribution of each effect to the level alignment for both standing and lying 6P layers and show that on ZnO(0001[combining macron]) only the push-back contributes, while on ZnO(101[combining macron]0) and ZnO(0001) Femi level pinning occurs in addition. In all three cases the lying 6P interlayer establishes the same work function to which the levels of the 6P multilayer align. Only the identification of the complex interplay of level alignment mechanisms and molecular degrees of freedom allows deriving a reliable picture of the energy levels at this heterojunction. This is important as the presence of an interlayer and its modified electronic states might go unnoticed, and conclusions on the correlation between purported interfacial energy levels and functionality of such semiconductor heterojunctions could be misleading.

16.
J Am Chem Soc ; 141(11): 4764-4774, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30816035

ABSTRACT

High spin ( S = 1) organic diradicals may offer enhanced properties with respect to several emerging technologies, but typically exhibit low singlet triplet energy gaps and possess limited thermal stability. We report triplet ground state diradical 2 with a large singlet-triplet energy gap, Δ EST ≥ 1.7 kcal mol-1, leading to nearly exclusive population of triplet ground state at room temperature, and good thermal stability with onset of decomposition at ∼160 °C under inert atmosphere. Magnetic properties of 2 and the previously prepared diradical 1 are characterized by SQUID magnetometry of polycrystalline powders, in polystyrene glass, and in other matrices. Polycrystalline diradical 2 forms a novel one-dimensional (1D) spin-1 ( S = 1) chain of organic radicals with intrachain antiferromagnetic coupling of J'/ k = -14 K, which is associated with the N···N and N···O intermolecular contacts. The intrachain antiferromagnetic coupling in 2 is by far strongest among all studied 1D S = 1 chains of organic radicals, which also makes 1D S = 1 chains of 2 most isotropic, and therefore an excellent system for studies of low-dimensional magnetism. In polystyrene glass and in frozen benzene or dibutyl phthalate solution, both 1 and 2 are monomeric. Diradical 2 is thermally robust and is evaporated under ultrahigh vacuum to form thin films of intact diradicals on silicon substrate, as demonstrated by X-ray photoelectron spectroscopy. Based on C-K NEXAFS spectra and AFM images of the ∼1.5 nm thick films, the diradical molecules form islands on the substrate with molecules stacked approximately along the crystallographic a-axis. The films are stable under ultrahigh vacuum for at least 60 h but show signs of decomposition when exposed to ambient conditions for 7 h.

17.
Sci Rep ; 9(1): 488, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30679501

ABSTRACT

For the layered transition metal dichalcogenide 1T-TaS2, we establish through a unique experimental approach and density functional theory, how ultrafast charge transfer in 1T-TaS2 takes on isotropic three-dimensional character or anisotropic two-dimensional character, depending on the commensurability of the charge density wave phases of 1T-TaS2. The X-ray spectroscopic core-hole-clock method prepares selectively in- and out-of-plane polarized sulfur 3p orbital occupation with respect to the 1T-TaS2 planes and monitors sub-femtosecond wave packet delocalization. Despite being a prototypical two-dimensional material, isotropic three-dimensional charge transfer is found in the commensurate charge density wave phase (CCDW), indicating strong coupling between layers. In contrast, anisotropic two-dimensional charge transfer occurs for the nearly commensurate phase (NCDW). In direct comparison, theory shows that interlayer interaction in the CCDW phase - not layer stacking variations - causes isotropic three-dimensional charge transfer. This is presumably a general mechanism for phase transitions and tailored properties of dichalcogenides with charge density waves.

18.
Chemistry ; 24(53): 14198-14206, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30009392

ABSTRACT

The effect of intermolecular H-bonding interactions on the local electronic structure of N-containing functional groups (amino group and pyridine-like N) that are characteristic of polymeric carbon nitride materials p-CN(H), a new class of metal-free organophotocatalysts, was investigated. Specifically, the melamine molecule, a building block of p-CN(H), was characterized by X-ray photoelectron (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The molecule was studied as a noninteracting system in the gas phase and in the solid state within a H-bonded network. With the support of DFT simulations of the spectra, it was found that the H-bonds mainly affect the N 1s level of the amino group, leaving the N 1s level of the pyridine-like N mostly unperturbed. This is responsible for a reduction of the chemical shift between the two XPS N 1s levels relative to free melamine. Consequently, N K-edge NEXAFS resonances involving the amino N 1s level also shift to lower photon energies. Moreover, the solid-state absorption spectra showed significant modification/quenching of resonances related to transitions from the amino N 1s level to σ* orbitals involving the NH2 termini.

19.
Chemphyschem ; 19(9): 1041-1047, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29451358

ABSTRACT

Cross-linked polymers of elemental sulfur are of potential interest for electronic applications as they enable facile thin-film processing of an abundant and inexpensive starting material. Here, we characterize the electronic structure of a cross-linked sulfur/diisopropenyl benzene (DIB) polymer by a combination of soft and hard X-ray photoelectron spectroscopy (SOXPES and HAXPES). Two different approaches for enhancing the conductivity of the polymer are compared: the addition of selenium in the polymer synthesis and the addition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) during film preparation. For the former, we observe the incorporation of Se into the polymer structure resulting in a changed valence-band structure. For the latter, a Fermi level shift in agreement with p-type doping of the polymer is observed and also the formation of a surface layer consisting mostly of TFSI anions.

20.
ACS Appl Mater Interfaces ; 9(40): 34970-34978, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28925263

ABSTRACT

Metal halide perovskites have emerged as materials of high interest for solar energy-to-electricity conversion, and in particular, the use of mixed-ion structures has led to high power conversion efficiencies and improved stability. For this reason, it is important to develop means to obtain atomic level understanding of the photoinduced behavior of these materials including processes such as photoinduced phase separation and ion migration. In this paper, we implement a new methodology combining visible laser illumination of a mixed-ion perovskite ((FAPbI3)0.85(MAPbBr3)0.15) with the element specificity and chemical sensitivity of core-level photoelectron spectroscopy. By carrying out measurements at a synchrotron beamline optimized for low X-ray fluxes, we are able to avoid sample changes due to X-ray illumination and are therefore able to monitor what sample changes are induced by visible illumination only. We find that laser illumination causes partially reversible chemistry in the surface region, including enrichment of bromide at the surface, which could be related to a phase separation into bromide- and iodide-rich phases. We also observe a partially reversible formation of metallic lead in the perovskite structure. These processes occur on the time scale of minutes during illumination. The presented methodology has a large potential for understanding light-induced chemistry in photoactive materials and could specifically be extended to systematically study the impact of morphology and composition on the photostability of metal halide perovskites.

SELECTION OF CITATIONS
SEARCH DETAIL
...