Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 143: 107091, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183683

ABSTRACT

This scientific review documents the recent progress of C3-spirooxindoles chemistry (synthesis and reaction mechanism) and their bioactivities, focusing on the promising results as well as highlighting the biological mechanism via the reported molecular docking findings of the most bioactive derivatives. C3-Spirooxindoles are attractive bioactive agents and have been found in a variety of natural compounds, including alkaloids. They are widely investigated in the field of medicinal chemistry and play a key role in medication development, such as antivirals, anticancer agents, antimicrobials, etc. Regarding organic synthesis, several traditional and advanced strategies have been reported, particularly those that started with isatin derivatives.


Subject(s)
Benzopyrans , Nitriles , Spiro Compounds , Spirooxindoles , Molecular Docking Simulation , Spiro Compounds/pharmacology , Spiro Compounds/chemistry , Oxindoles/pharmacology , Oxindoles/chemistry
2.
Int J Biol Macromol ; 225: 1462-1475, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36435457

ABSTRACT

Modified magnetite chitosan with silver nanoparticles was synthesized and tested for removing cationic and anionic dyes in aqueous solutions. Initial dye concentration, pH, and contact time were examined. Results showed that pH (4.0) was optimal for removing anionic dyes (methyl orange) and pH 8.0 for removing cationic dyes (methylene blue). According to these results, zeta potentials were found to be 8.43 and - 39.17 mV at pH 4.0 and 8.0, respectively. So, it is attracted to positively charged cationic dyes in an alkaline medium and negatively charged anionic dyes in an acidic medium because of their opposite charges. Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA), and zeta potential measurements were used to characterize the synthesized nanosorbents. A pseudo-second-order kinetic model is fitted with the Langmuir adsorption model, with an adsorption capacity of 417 and 476 mg/g for methyl orange and methylene blue, respectively. For both dyes, modified magnetite chitosan with silver nanoparticles showed high regeneration capability and recovery for up to four cycles without adsorption efficiency loss. Furthermore, modified magnetite chitosan with silver nanoparticles, as prepared in the present study, was demonstrated to be an effective adsorbent for organic pollutants in wastewater.


Subject(s)
Chitosan , Magnetite Nanoparticles , Water Pollutants, Chemical , Coloring Agents/chemistry , Ferrosoferric Oxide , Chitosan/chemistry , Silver , Kinetics , Methylene Blue/chemistry , Water/chemistry , Cations , Magnetite Nanoparticles/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
3.
Sci Rep ; 12(1): 19241, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357532

ABSTRACT

The promising features of most bacterial celluloses (BC) promote the continuous mining for a cost-effective production approach toward wide and sustainable applications. Herein, cantaloupe peels (CP) were successfully implemented for sustainable BC production. Results indicated that the enzymatically hydrolyzed CP supported the maximum BC production of approximately 3.49 g/L when used as a sole fermentation media. The produced BC was fabricated with polyvinyl alcohol (PVA) and chitosan (Ch), and loaded with green synthesized copper oxide nanoparticles (CuO-NPs) to improve its biological activity. The novel composite showed an antimicrobial activity against several human pathogens such as Staphylococcus aureus, Streptococcus mutans, Salmonella typhimurium, Escherichia coli, and Pseudomonas fluorescens. Furthermore, the new composite revealed a significant in vitro anticancer activity against colon (Caco-2), hepatocellular (HepG-2), and breast (MDA) cancer cells, with low IC50 of 0.48, 0.27, and 0.33 mg/mL for the three cell lines, respectively. On the other hand, the new composite was remarkably safe for human skin fibroblast (HSF) with IC50 of 1.08 mg/mL. Interestingly, the composite membranes exhibited lethal effects against all stages of larval instar and pupal stage compared with the control. In this study, we first report the diverse potential applications of BC/PVA/Ch/CuO-NPs composites based on green synthesized CuO-NPs and sustainably produced BC membrane.


Subject(s)
Chitosan , Cucumis melo , Metal Nanoparticles , Nanoparticles , Humans , Copper , Cellulose , Caco-2 Cells , Escherichia coli , Bacteria , Chitosan/pharmacology , Polyvinyl Alcohol , Oxides , Anti-Bacterial Agents/pharmacology
4.
Environ Sci Pollut Res Int ; 29(12): 18189-18201, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34687415

ABSTRACT

Novel and sustainable chitosan (CS)/activated charcoal (AC) composites were prepared by cross-linking with epichlorohydrin (ECH) to form a porous structure. Different titanium dioxide nanoparticle (TiO2 NPs) concentrations (0, 0.2, 0.4, and 0.8% w/w) were added to enhance the photocatalytic, antibacterial, larvicidal, and pupicidal activities' efficiency toward Rose Bengal (RB) dye and the Culex pipiens. The composites were characterized by FT-IR, XRD, XPS, BET and SEM. The SEM images revealed the porous structure of CS/AC and TiO2 nanoparticles were uniformly distributed in the CS/AC matrix. The degradation of RB dye was used to test the photocatalytic behavior of the composites. Supporting TiO2 on a CS/AC matrix resulted in a significant increase in photocatalytic performance. The antibacterial activities supported by CS/AC/TiO2 NPs were evaluated by bacterial growth inhibition against B. subtilis, S. aureus, E. coli, and P. aeruginosa. The results showed that CS/AC/TiO2 NPs composite has an inhibitory effect and therefore considered antibacterial agents. CS/AC/0.4%TiO2 NPs showed maximum efficacy against larvicidal activity and pupicidal of mosquito vector which recorded 99.00 ± 1.14, 95.00 ± 1.43, and 92.20 ± 2.64 for the first, second, and third larval instars and 66.00 ± 2.39 for pupal mortality, while the repellent activity reported high protection at 82.95 ± 2.99 with 3.24 mg/cm2 dose compared to control DEET.


Subject(s)
Chitosan , Nanoparticles , Animals , Catalysis , Charcoal/pharmacology , Chitosan/chemistry , Escherichia coli , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus , Titanium/chemistry , Titanium/pharmacology
5.
Biomolecules ; 11(11)2021 11 12.
Article in English | MEDLINE | ID: mdl-34827681

ABSTRACT

Cellulose has received great attention owing to its distinctive structural features, exciting physico-chemical properties, and varied applications. The combination of cellulose and silver nanoparticles currently allows to fabricate different promising functional nanocomposites with unique properties. The current work offers a wide and accurate overview of the preparation methods of cellulose-silver nanocomposite materials, also providing a punctual discussion of their potential applications in different fields (i.e., wound dressing, high-performance textiles, electronics, catalysis, sensing, antimicrobial filtering, and packaging). In particular, different preparation methods of cellulose/silver nanocomposites based on in situ thermal reduction, blending and dip-coating, or additive manufacturing techniques were thoroughly described. Hence, the correlations among the structure and physico-chemical properties in cellulose/silver nanocomposites were investigated in order to better control the final properties of the nanocomposites and analyze the key points and limitations of the current manufacturing approaches.


Subject(s)
Cellulose , Silver , Metal Nanoparticles , Microbial Sensitivity Tests , Nanocomposites
6.
Carbohydr Polym ; 230: 115711, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31887890

ABSTRACT

Cellulose nanocrystal (CNC) and ZnO/CuO nanostructure were successfully synthesized by acid hydrolysis and sol-chemical methods, respectively. For the first time, CNC was used as a host polymer for synthesis of CNC/ZnO/CuO through In-situ solution casting technique. Morphological and structural of CNC, ZnO/CuO and hybrid CNC/ZnO/CuO were investigated by TEM, SEM-EDX, FT-IR, XRD and XPS analyses. The analysis revealed that, poly-dispersed, smooth and rod like CNC with an average length of ∼ 85.4 nm, average diameter of ∼13.9 nm and surface charge of 0.01 mmol/gm. As well, irregular shapes as hexagonal, spherical and cluster or star like of ZnO/CuO were formed. EDX and XRD spectra exhibited highly purified CNC/ZnO/CuO and pointed to cellulose II crystallite form with a monoclinic structure. The results demonstrated that, 91.3 % and 99.7 % dye degradation was achieved after 40 min of irradiation due to ZnO/CuO and CNC/ZnO/CuO treatment. Moreover, the inhibition zones formed due to 100 ppm ZnO/CuO were duplicated after integrating CNC (from 7.7:10.3 mm to 14.3:20.3 mm). The hybrid nanostructure exhibit larvicidal activity against Anopheles stephensi better than CNC and ZnO/CuO nanostructures.


Subject(s)
Cellulose , Copper , Metal Nanoparticles/chemistry , Zinc Oxide , Animals , Anopheles/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Copper/chemistry , Copper/pharmacology , Photolysis , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...