Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Chem Phys ; 160(19)2024 May 21.
Article in English | MEDLINE | ID: mdl-38747434

ABSTRACT

The gas-phase rotational spectrum from 8 to 750 GHz and the high-resolution infrared (IR) spectrum of pyridazine (o-C4H4N2) have been analyzed for the ground and four lowest-energy vibrationally excited states. A combined global fit of the rotational and IR data has been obtained using a sextic, centrifugally distorted-rotor Hamiltonian with Coriolis coupling between appropriate states. Coriolis coupling has been addressed in the two lowest-energy coupled dyads (ν16, ν13 and ν24, ν9). Utilizing the Coriolis coupling between the vibrational states of each dyad and the analysis of the IR spectrum for ν16 and ν9, we have determined precise band origins for each of these fundamental states: ν16 (B1) = 361.213 292 7 (17) cm-1, ν13 (A2) = 361.284 082 4 (17) cm-1, ν24 (B2) = 618.969 096 (26) cm-1, and ν9 (A1) = 664.723 378 4 (27) cm-1. Notably, the energy separation in the ν16-ν13 Coriolis-coupled dyad is one of the smallest spectroscopically measured energy separations between vibrational states: 2122.222 (72) MHz or 0.070 789 7 (24) cm-1. Despite ν13 being IR inactive and ν24 having an impractically low-intensity IR intensity, the band origins of all four vibrational states were measured, showcasing the power of combining the data provided by millimeter-wave and high-resolution IR spectra. Additionally, the spectra of pyridazine-dx isotopologues generated for a previous semi-experimental equilibrium structure (reSE) determination allowed us to analyze the two lowest-energy vibrational states of pyridazine for all nine pyridazine-dx isotopologues. Coriolis-coupling terms have been measured for analogous vibrational states across seven isotopologues, both enabling their comparison and providing a new benchmark for computational chemistry.

2.
J Am Chem Soc ; 145(40): 21785-21797, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37774420

ABSTRACT

Recent advances in gas-phase structure determination afford outstanding agreement between the CCSD(T)/cc-pCVTZ-corrected semi-experimental (reSE) equilibrium structures and their corresponding best theoretical estimates (BTEs) of the equilibrium structures (re) based upon corrections to the CCSD(T)/cc-pCV5Z geometries for the aromatic heterocycles pyrimidine and pyridazine. Herein, that same analysis is extended to the fundamental aromatic molecule benzene, using published experimental spectroscopic data for a total of 11 available isotopologues. The incorporation of rotational constants from all of these isotopologues and CCSD(T) corrections to address the impacts of both the vibration-rotation interaction and electron-mass distribution results in a highly precise and accurate reSE structure. The CCSD(T)/cc-pCV5Z optimized geometry has been further corrected to address a finite basis set, untreated electron correlation, relativistic effects, and a breakdown of the Born-Oppenheimer approximation. This analysis achieves outstanding agreement between the re (BTE) and reSE structural parameters of benzene to a highly satisfying level (0.0001 Å), an agreement that surpasses our recently published structures of the aforementioned nitrogen-substituted benzene analogues. The D6h geometry of benzene is now known to an unprecedented precision: RC-C = 1.3913 (1) Å and RC-H = 1.0809 (1) Å. The mutual agreement between theory and experiment presented in this work validates both, substantially resolving all discrepancies between the reSE and theoretical re structures available in the literature.

3.
J Phys Chem A ; 127(19): 4277-4290, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37146283

ABSTRACT

We present computational studies of reaction pathways for alkyne/polyyne dimerization that represent plausible early steps in mechanisms for carbon condensation. A previous computational study of the ring coalescence and annealing model of C60 formation revealed that a 1,4-didehydrobenzocyclobutadiene intermediate (p-benzyne derivative) has little to no barrier to undergoing an unproductive retro-Bergman cyclization, which brings into question the relevance of that reaction pathway. The current study investigates an alternative model, which proceeds through an initial [4 + 2] cycloaddition instead of a [2 + 2] cycloaddition. In this pathway, the problematic intermediate is avoided, with the reaction proceeding via a (potentially) more kinetically stable tetradehydronaphthalene derivative. The computational studies of the [2 + 2] and [4 + 2] model systems, with increasing alkyne substitutions, reveal that the para-benzyne diradical of the [4 + 2] pathway has a significantly greater barrier to ring opening than the analogous intermediates of the [2 + 2] pathway and that alkyne substitution has little effect on this important barrier. These studies employ spin-flip, time-dependent density functional theory (SF-TDDFT) to provide suitable treatment of open-shell diradical intermediates.

4.
J Phys Chem A ; 127(8): 1909-1922, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36794985

ABSTRACT

The rotational spectrum of 2-furonitrile (2-cyanofuran) has been obtained from 140 to 750 GHz, capturing its most intense rotational transitions at ambient temperature. 2-Furonitrile is one of two isomeric cyano-substituted furan derivatives, both of which possess a substantial dipole moment due to the cyano group. The large dipole of 2-furonitrile allowed over 10 000 rotational transitions of its ground vibrational state to be observed and least-squares fit to partial octic, A- and S-reduced Hamiltonians with low statistical uncertainty (σfit = 40 kHz). The high-resolution infrared spectrum, obtained at the Canadian Light Source, allowed for accurate and precise determination of the band origins of its three lowest-energy fundamental modes (ν24, ν17, and ν23). Similar to other cyanoarenes, the first two fundamental modes (ν24, A″, and ν17, A', for 2-furonitrile) form an a- and b-axis Coriolis-coupled dyad. More than 7000 transitions from each of these fundamental states were fit to an octic A-reduced Hamiltonian (σfit = 48 kHz), and the combined spectroscopic analysis determines fundamental energies of 160.1645522 (26) cm-1 and 171.9436561 (25) cm-1 for ν24 and ν17, respectively. The least-squares fitting of this Coriolis-coupled dyad required 11 coupling terms, Ga, GaJ, GaK, GaJJ, GaKK, Fbc, FbcJ, FbcK, Gb, GbJ, and FacK. Using both the rotational and high-resolution infrared spectra, a preliminary least-squares fit was obtained for ν23, providing its band origin of 456.7912716 (57) cm-1. The transition frequencies and spectroscopic constants provided in this work, when combined with theoretical or experimental nuclear quadrupole coupling constants, will provide the foundation for future radioastronomical searches for 2-furonitrile across the frequency range of currently available radiotelescopes.

5.
J Chem Phys ; 157(3): 034303, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35868945

ABSTRACT

Hydrazoic acid (HN3) is used as a case study for investigating the accuracy and precision by which a molecular structure-specifically, a semi-experimental equilibrium structure (re SE)-may be determined using current state-of-the-art methodology. The influence of the theoretical corrections for effects of vibration-rotation coupling and electron-mass distribution that are employed in the analysis is explored in detail. The small size of HN3 allowed us to deploy considerable computational resources to probe the basis-set dependence of these corrections using a series of coupled-cluster single, double, perturbative triple [CCSD(T)] calculations with cc-pCVXZ (X = D, T, Q, 5) basis sets. We extrapolated the resulting corrections to the complete basis set (CBS) limit to obtain CCSD(T)/CBS corrections, which were used in a subsequent re SE structure determination. The re SE parameters obtained using the CCSD(T)/cc-pCV5Z corrections are nearly identical to those obtained using the CCSD(T)/CBS corrections, with uncertainties in the bond distances and angles of less than 0.0006 Å and 0.08°, respectively. The previously obtained re SE structure using CCSD(T)/ANO2 agrees with that using CCSD(T)/cc-pCV5Z to within 0.000 08 Å and 0.016° for bond distances and angles, respectively, and with only 25% larger uncertainties, validating the idea that re SE structure determinations can be carried out with significantly smaller basis sets than those needed for similarly accurate, strictly ab initio determinations. Although the purely computational re structural parameters [CCSD(T)/cc-pCV6Z] fall outside of the statistical uncertainties (2σ) of the corresponding re SE structural parameters, the discrepancy is rectified by applying corrections to address the theoretical limitations of the CCSD(T)/cc-pCV6Z geometry with respect to basis set, electron correlation, relativity, and the Born-Oppenheimer approximation, thereby supporting the contention that the semi-experimental approach is both an accurate and vastly more efficient method for structure determinations than is brute-force computation.

6.
J Phys Chem A ; 125(36): 7976-7987, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34478298

ABSTRACT

A semi-experimental equilibrium structure (reSE) of pyridazine (o-C4H4N2) has been determined using the rotational spectra of 18 isotopologues. Spectroscopic constants of four isotopologues are reported for the first time (measured from 235 to 360 GHz), while spectroscopic constants for previously reported isotopologues are improved by extending the frequency coverage (measured from 130 to 375 GHz). The experimental values of the ground-state rotational constants (A0, B0, and C0) from each isotopologue were converted to determinable constants (A0″, B0″, and C0″), which were then corrected for the effects of vibration-rotation interactions and electron-mass distributions using CCSD(T)/cc-pCVTZ calculations. The resultant reSE for pyridazine determines bond distances to within 0.001 Å and bond angles within 0.04°, a reduction in the statistical uncertainties by at least a factor of two relative to the previously reported reSE. The improvement in precision appears to be largely due to the use of higher-level theoretical calculations of the vibration-rotation and electron-mass effects, though the incorporation of the newly measured isotopologues ([4-2H, 4-13C]-, [4-2H, 5-13C]-, [4-2H, 6-13C]-, and [4,5-2H, 4-13C]-pyridazine) is partially responsible for the improved determination of the hydrogen-containing bond angles. The computed equilibrium structure (re) (CCSD(T)/cc-pCV5Z) and a "best theoretical estimate" of the equilibrium structure (re) both agree with the updated reSE structure within the statistical experimental uncertainty (2σ) of each structural parameter.

7.
J Chem Phys ; 155(5): 054302, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34364360

ABSTRACT

The pure rotational spectrum of thiazole (c-C3H3NS, Cs) has been studied in the millimeter-wave region from 130 to 375 GHz. Nearly 4800 newly measured rotational transitions for the ground vibrational state of the main isotopologue were combined with previously reported measurements and least-squares fit to a complete sextic Hamiltonian. Transitions for six singly substituted heavy-atom isotopologues (13C, 15N, 33S, 34S) were observed at natural abundance and likewise fit. Several deuterium-enriched samples were prepared, which gave access to the rotational spectra of 16 additional isotopologues, 14 of which had not been previously studied. The rotational spectra of each isotopologue were fit to A- and S-reduced distorted-rotor Hamiltonians in the Ir representation. The experimental values of the ground-state rotational constants (A0, B0, and C0) from each isotopologue were converted to determinable constants (A0″, B0″, and C0″), which were corrected for effects of vibration-rotation interactions and electron-mass distributions using coupled-cluster singles, doubles, and perturbative triples calculations [CCSD(T)/cc-pCVTZ]. The moments of inertia from the resulting constants (Ae, Be, and Ce) of 24 isotopologues were used to determine the precise semi-experimental equilibrium structure (re SE) of thiazole. As a basis for comparison, a purely theoretical equilibrium structure was estimated by an electronic structure calculation [CCSD(T)/cc-pCV5Z] that was subsequently corrected for extrapolation to the complete basis set, electron correlation beyond CCSD(T), relativistic effects, and the diagonal Born-Oppenheimer correction. The precise re SE structure is compared to the resulting "best theoretical estimate" structure. Some, but not all, of the best theoretical re structural parameters fall within the narrow statistical limits (2σ) of the re SE results. The possible origin of the discrepancies between the best theoretical estimate re and semi-empirical re SE structures is discussed.

8.
J Am Chem Soc ; 143(25): 9551-9564, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34155881

ABSTRACT

Three cyanobutadiene isomers have been synthesized and their rotational spectra analyzed in the 130-375 GHz frequency range. These species, which are close analogues of known interstellar molecules and are isomers of the heterocyclic aromatic molecule pyridine (C5H5N), offer the opportunity of revealing important insights concerning the chemistry in astronomical environments. The s-trans conformers of E-1-cyano-1,3-butadiene and Z-1-cyano-1,3-butadiene are observed, while both the anti-clinal and syn-periplanar conformers of 4-cyano-1,2-butadiene are evident in the rotational spectra. Over 1000 transitions for s-trans-Z-1-cyano-1,3-butadiene and for syn-periplanar-4-cyano-1,2-butadiene are fit to an octic, distorted-rotor Hamiltonian with low uncertainty (<50 kHz). Although neither s-trans-E-1-cyano-1,3-butadiene nor anti-clinal-4-cyano-1,2-butadiene can be fully treated with a distorted-rotor Hamiltonian in this frequency range, we provide herein minimally perturbed, single-state least-squares fits of over 1000 transitions for each species, yielding sets of spectroscopic constants that are expected to enable accurate prediction of high-intensity transitions at frequencies up to 370 GHz for both isomers. The assigned transitions and spectroscopic constants for these cyanobutadienes have already enabled the identification of two isomers in harsh reaction environments and should be sufficient to enable their identification in astronomical environments by radio astronomy.

9.
J Org Chem ; 85(9): 5787-5798, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32302481

ABSTRACT

Four cyanobutadiene isomers of considerable interest to the organic chemistry, molecular spectroscopy, and astrochemistry communities were synthesized in good yields and isolated as pure compounds: (E)-1-cyano-1,3-butadiene (E-1), (Z)-1-cyano-1,3-butadiene (Z-1), 4-cyano-1,2-butadiene (2), and 2-cyano-1,3-butadiene (3). A diastereoselective synthesis was developed to generate (E)-1-cyano-1,3-butadiene (1) (10:1 E/Z) via tandem SN2 and E2' reactions. The potential energy surfaces of the E2' reactions leading to (E)- and (Z)-1-cyano-1,3-butadiene (1) were analyzed by density functional theory calculations, and the observed diastereoselectivity was rationalized in the context of the Curtin-Hammett principle. The preparation of pure samples of these reactive compounds enables measurement of their laboratory rotational spectra, which are the critical data needed to search for these species in space by radioastronomy.


Subject(s)
Isomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...