Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 39(2): 295-309, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26177873

ABSTRACT

Mass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC ) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC ) showed a characteristic four-phase CO2 exchange pattern. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m(-2) year(-1) , mean ± 95% confidence interval) indicated the site was a net sink of -333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was -1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha(-1) year(-1) . Average integrated daily FA,EC was -234 ± 5 mmol CO2 m(-2) d(-1) and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA . Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi-arid C3 and C4 bioenergy candidates.


Subject(s)
Acids/metabolism , Agave/metabolism , Gases/metabolism , Biomass , Carbon/metabolism , Carbon Dioxide/metabolism , Ecosystem , Models, Biological , Plant Leaves/metabolism , Regression Analysis , Reproducibility of Results , Respiration , Soil , Spectrum Analysis , Thermodynamics , Water
2.
New Phytol ; 207(3): 491-504, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26153373

ABSTRACT

Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO2 uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food, feed, and bioenergy crops. An improved understanding of CAM has potential for high returns on research investment. To exploit the potential of CAM crops and CAM bioengineering, it will be necessary to elucidate the evolution, genomic features, and regulatory mechanisms of CAM. Field trials and predictive models will be required to assess the productivity of CAM crops, while new synthetic biology approaches need to be developed for CAM engineering. Infrastructure will be needed for CAM model systems, field trials, mutant collections, and data management.


Subject(s)
Biofuels , Carboxylic Acids/metabolism , Droughts , Food , Hot Temperature , Research
3.
New Phytol ; 200(4): 1116-31, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23992169

ABSTRACT

A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants. SD emphasizes state-dependent feedback interaction to describe the emergent properties of a complex system. These mechanisms maintain biological systems with homeostatic limits on a temporal basis. Previous empirical studies on CAM have correlated biological constants (e.g. enzyme kinetic parameters) with expression over the CAM diel cycle. The SD model integrates these constants within the architecture of the CAM 'system'. This allowed quantitative causal connections to be established between biological inputs and the four distinct phases of CAM delineated by gas exchange and malic acid accumulation traits. Regulation at flow junctions (e.g. stomatal and mesophyll conductance, and malic acid transport across the tonoplast) that are subject to feedback control (e.g. stomatal aperture, malic acid inhibition of phosphoenolpyruvate carboxylase, and enzyme kinetics) was simulated. Simulated expression for the leaf-succulent Kalanchoë daigremontiana and more succulent tissues of Agave tequilana showed strong correlation with measured gas exchange and malic acid accumulation (R(2)  = 0.912 and 0.937, respectively, for K. daigremontiana and R(2)  = 0.928 and 0.942, respectively, for A. tequilana). Sensitivity analyses were conducted to quantitatively identify determinants of diel CO2 uptake. The transition in CAM expression from low to high volume/area tissues (elimination of phase II-IV carbon-uptake signatures) was achieved largely by the manipulation three input parameters.


Subject(s)
Agave/physiology , Kalanchoe/physiology , Models, Biological , Photosynthesis/physiology , Systems Biology , Agave/metabolism , Carbon Dioxide/metabolism , Computer Simulation , Kalanchoe/metabolism , Metabolic Engineering , Multivariate Analysis , Plant Stomata/physiology , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL