Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 55(5): 2831-2838, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33566613

ABSTRACT

As part of the United States Environmental Protection Agency's 2010 Nitrogen Dioxide (NO2) National Ambient Air Quality Standards (NAAQS) review, a national network of near-road sites was established to characterize pollutant behavior, interaction, and dispersion in the ambient near-road environment. Using spatial interpolation to estimate the near-road concentration increments of NO2 and particulate matter with an aerodynamic diameter of 2.5 µm and less (PM2.5) relative to nearby non-near-road monitors, we found that the 2013-2018 national average increment is 6.9 ppb and 1.0 µg m-3 for NO2 and PM2.5, respectively. Analyses of the hourly near-road NO2, nitric oxide (NO), and PM2.5 increments showed distinct diurnal cycles; the NO2 increment peaks at ∼9 ppb during the early afternoon (2-4 pm local time) while the NO and PM2.5 increments peak during the morning rush hour (5-8 am local time) at 25 ppb and 1.8 µg m-3 for NO and PM2.5, respectively. Although long-term trends are not yet available for this network of sites, a similar analysis of the NO2 and PM2.5 increment at a quasi-near-road site outside of the official network in Elizabeth, NJ showed gradual decreases in the increment over time since the mid-2000s.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring , Nitrogen Dioxide/analysis , Nitrogen Oxides/analysis , Particulate Matter/analysis , United States , Vehicle Emissions/analysis
2.
Atmosphere (Basel) ; 11(11): 1243, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33489318

ABSTRACT

This study uses Las Vegas near-road measurements of carbon monoxide (CO) and nitrogen oxides (NOx) to test the consistency of onroad emission constraint methodologies. We derive commonly used CO to NOx ratios (ΔCO:ΔNOx) from cross-road gradients and from linear regression using ordinary least squares (OLS) regression and orthogonal regression. The CO to NOx ratios are used to infer NOx emission adjustments for a priori emissions estimates from EPA's MOtor Vehicle Emissions Simulator (MOVES) model assuming unbiased CO. The assumption of unbiased CO emissions may not be appropriate in many circumstances but was implemented in this analysis to illustrate the range of NOx scaling factors that can be inferred based on choice of methods and monitor distance alone. For the nearest road estimates (25m), the cross-road gradient and ordinary least squares (OLS) agree with each other and are not statistically different from the MOVES-based emission estimate while ΔCO:ΔNOx from orthogonal regression is significantly higher than the emitted ratio from MOVES. Using further downwind measurements (i.e., 115m and 300m) increases OLS and orthogonal regression estimates of ΔCO:ΔNOx but not cross-road gradient ΔCO:ΔNOx. The inferred NOx emissions depend on the observation-based method, as well as the distance of the measurements from the roadway and can suggest either that MOVES NOx emissions are unbiased or that they should be adjusted downward by between 10% and 47%. The sensitivity of observation-based ΔCO:ΔNOx estimates to the selected monitor location and to the calculation method characterize the inherent uncertainty of these methods that cannot be derived from traditional standard-error based uncertainty metrics.

3.
J Geophys Res Atmos ; 123(6): 3304-3320, 2018 Mar 27.
Article in English | MEDLINE | ID: mdl-35958736

ABSTRACT

Modeled source attribution information from the Community Multiscale Air Quality model was coupled with ambient data from the 2011 Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality Baltimore field study. We assess source contributions and evaluate the utility of using aircraft measured CO and NO y relationships to constrain emission inventories. We derive ambient and modeled ΔCO:ΔNO y ratios that have previously been interpreted to represent CO:NO y ratios in emissions from local sources. Modeled and measured ΔCO:ΔNO y are similar; however, measured ΔCO:ΔNO y has much more daily variability than modeled values. Sector-based tagging shows that regional transport, on-road gasoline vehicles, and nonroad equipment are the major contributors to modeled CO mixing ratios in the Baltimore area. In addition to those sources, on-road diesel vehicles, soil emissions, and power plants also contribute substantially to modeled NO y in the area. The sector mix is important because emitted CO:NO x ratios vary by several orders of magnitude among the emission sources. The model-predicted gasoline/diesel split remains constant across all measurement locations in this study. Comparison of ΔCO:ΔNO y to emitted CO:NO y is challenged by ambient and modeled evidence that free tropospheric entrainment, and atmospheric processing elevates ambient ΔCO:ΔNO y above emitted ratios. Specifically, modeled ΔCO:ΔNO y from tagged mobile source emissions is enhanced 5-50% above the emitted ratios at times and locations of aircraft measurements. We also find a correlation between ambient formaldehyde concentrations and measured ΔCO:ΔNO y suggesting that secondary CO formation plays a role in these elevated ratios. This analysis suggests that ambient urban daytime ΔCO:ΔNO y values are not reflective of emitted ratios from individual sources.

4.
Atmos Environ (1994) ; 165: 23-24, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-29545730

ABSTRACT

The nitrogen dioxide/oxides of nitrogen (NO2/NOX) ratio is an important surrogate for NO to NO2 chemistry in dispersion models when estimating NOX impacts in a near-road environment. Existing dispersion models use different techniques and assumptions to represent NO to NO2 conversion and do not fully characterize all of the important atmospheric chemical and mechanical processes. Thus, "real-world" ambient measurements must be analyzed to assess the behavior of NO2/NOX ratios near roadways. An examination of NO2/NOX ratio data from a field study conducted in Las Vegas, Nevada (NV), from mid-December, 2008 through mid-December, 2009 provides insights into the appropriateness of assumptions about the NO2/NOX ratio included in dispersion models. Data analysis indicates multiple factors affect the downwind NO2/NOX ratio. These include spatial gradient, background ozone (O3), source emissions of NO and NO2, and background NO2/NOX ratio. Analysis of the NO2/NOX ratio spatial gradient indicates that under high O3 conditions, the change in the ratio is fairly constant once a certain O3 threshold (≥ 30 ppb) is reached. However, under low O3 conditions (< 30 ppb), there are differences between weekdays and weekends, most likely due to a decline in O3 concentrations during the weekday morning hours, reducing the O3 available to titrate the emitted NO, allowing lower NO2/NOX ratios. These results suggest that under high O3 conditions, NOX chemistry is driving the NO2/NOX ratios whereas under low O3 conditions, atmospheric mixing is the driving factor.

5.
Air Qual Atmos Health ; 10(5): 611-625, 2017 Jun.
Article in English | MEDLINE | ID: mdl-30245748

ABSTRACT

This paper describes a new regression modeling approach to estimate on-road nitrogen dioxide (NO2) and oxides of nitrogen (NOX) concentrations and near-road spatial gradients using data from a near-road monitoring network. Field data were collected in Las Vegas, NV at three monitors sited 20, 100, and 300 m from Interstate-15 between December, 2008 and January, 2010. Measurements of NO2 and NOX were integrated over 1-hour intervals and matched with meteorological data. Several mathematical transformations were tested for regressing pollutant concentrations against distance from the roadway. A logit-ln model was found to have the best fit (R2 = 94.7%) and also provided a physically realistic profile. The mathematical model used data from the near-road monitors to estimate on-road concentrations and the near-road gradient over which mobile source pollutants have concentrations elevated above background levels. Average and maximum on-road NO2 concentration estimates were 33 ppb and 105 ppb, respectively. Concentration gradients were steeper in the morning and late afternoon compared with overnight when stable conditions preclude mixing. Estimated on-road concentrations were also highest in the late afternoon. Median estimated on-road and gradient NO2 concentrations were lower during summer compared with winter, with a steeper gradient during the summer, when convective mixing occurs during a longer portion of the day On-road concentration estimates were higher for winds perpendicular to the road compared with parallel winds and for atmospheric stability with neutral-to-unstable atmospheric conditions. The concentration gradient with increasing distance from the road was estimated to be sharper for neutral-to-unstable conditions when compared with stable conditions and for parallel wind conditions compared with perpendicular winds. A regression of the NO2/NOX ratios yielded on-road ratios ranging from 0.25 to 0.35, substantially higher than the anticipated tail-pipe emissions ratios. The results from the ratios also showed that the diurnal cycle of the background NO2/NOX ratios were a driving factor in the on-road and downwind NO2/NOX ratios.

6.
Int J Wildland Fire ; 23(8): 1119-1129, 2014.
Article in English | MEDLINE | ID: mdl-34483633

ABSTRACT

Santa Ana winds have been implicated as a major driver of large wildfires in southern California. While numerous anecdotal reports exist, there is little quantitative analysis in peer-reviewed literature on how this weather phenomenon influences fire progression rates. We analysed fire progression within 158 fire events in southern California as a function of meteorologically defined Santa Ana conditions between 2001 and 2009. Our results show quantitatively that burned area per day is 3.5-4.5 times larger on Santa Ana days than on non-Santa Ana days. Santa Ana definition parameters (relative humidity, wind speed) along with other predictor variables (air temperature, fuel temperature, 10-h fuel moisture, population density, slope, fuel loading, previous-day burn perimeter) were tested individually and in combination for correlation with subsets of daily burned area. Relative humidity had the most consistently strong correlation with burned area per day. Gust and peak wind speed had a strong positive correlation with burned area per day particularly within subsets of burned area representing only the first day of a fire, >500 ha burned areas, and on Santa Ana days. The suite of variables comprising the best-fit generalised linear model for predicting burned area (R 2 = 0.41) included relative humidity, peak wind speed, previous-day burn perimeter and two binary indicators for first and last day of a fire event.

SELECTION OF CITATIONS
SEARCH DETAIL
...