Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Brachytherapy ; 23(2): 136-140, 2024.
Article in English | MEDLINE | ID: mdl-38242726

ABSTRACT

PURPOSE: Prospectively measure change in vaginal length after definitive chemoradiation (C-EBRT) with Intracavitary Brachytherapy (ICBT) for locally advanced cervix cancer (LACC) and correlate with vaginal dose (VD). MATERIALS AND METHODS: Twenty one female patients with LACC receiving C-EBRT and ICBT underwent serial vaginal length (VL) measurements. An initial measurement was made at the time of the first ICBT procedure and subsequently at 3 month intervals up to 1 year post radiation. The vagina was contoured as a 3-dimensional structure for each brachytherapy plan. The difference in VL before and at least 6 months after the last fraction of brachytherapy was considered as an indicator of toxicity. RESULTS: The mean initial VL was 8.7 cm (6.5-12) with median value of 8.5 cm. The mean VL after 6 months was 8.6 cm (6.5-12) and VL change was not found to be statistically significant. The median values (interquartile ranges) for vaginal D0.1cc, D1cc, and D2cc were 129.2 Gy (99.6-252.2), 96.9 Gy (84.2-114.9), and 89.6 Gy (82.4-102.2), respectively. No significant correlation was found between vaginal length change and the dosimetric parameters calculated for all patients. CONCLUSION: Definitive C-EBRT and ICBT did not significantly impact VL in this prospective cohort probably related to acceptable doses per ICRU constraints. Estimate of vaginal stenosis and sexual function was not performed in this cohort which is a limitation of this study and which we hope to study prospectively going forward.


Subject(s)
Brachytherapy , Uterine Cervical Neoplasms , Humans , Female , Vagina , Uterine Cervical Neoplasms/radiotherapy , Rectum , Radiotherapy Dosage , Constriction, Pathologic , Prospective Studies , Brachytherapy/methods
2.
J Biomed Phys Eng ; 13(6): 523-534, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38148963

ABSTRACT

Background: The BEBIG Portio multi-channel applicator provides better target dose coverage and sparing organs-at-risk compared to a single-channel cylinder. However, artifacts and distortions of Portio in magnetic resonance images (MRI) have not yet been reported. Objective: We aimed to quantify the artifacts and distortions in its 1.5-Tesla MR images before clinical use. Material and Methods: In this experimental study, we employed a gelatin-filled phantom to conduct our measurements. T2-weighted (T2W) images were examined for artifacts and distortions. Computed tomography (CT) images were used as a reference to assess image distortions. Artifact severity was measured by recording the full-width-at-half-maximum (FWHM) image pixel values at various positions along the length of the applicator/channels. CT and MRI-based applicator reconstruction accuracy were then compared, and signal-to-noise ratio (SNR) and contrast were also determined for the applicator images. Results: The applicator distortion level for the Portio applicator was less than the image spatial resolution (0.5±0.5 pixels). The average FWHM for the tandem applicator images was 5.23±0.39 mm, while it was 3.21±0.37 mm for all channels (compared to their actual diameters of 5.0 mm and 3.0 mm, respectively). The average applicator reconstruction difference between CT and MR images was 0.75±0.30 mm overall source dwell positions. The image SNR and contrast were both acceptable. Conclusion: These findings indicate that the Portio applicator has a satisfactory low level of artifacts and image distortions in 1.5-Tesla, T2W images. It may, therefore, be a promising option for MRI-guided multi-channel vaginal brachytherapy.

3.
Med Phys ; 50(12): 7368-7382, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37358195

ABSTRACT

BACKGROUND: MRI-only radiotherapy planning (MROP) is beneficial to patients by avoiding MRI/CT registration errors, simplifying the radiation treatment simulation workflow and reducing exposure to ionizing radiation. MRI is the primary imaging modality for soft tissue delineation. Treatment planning CTs (i.e., CT simulation scan) are redundant if a synthetic CT (sCT) can be generated from the MRI to provide the patient positioning and electron density information. Unsupervised deep learning (DL) models like CycleGAN are widely used in MR-to-sCT conversion, when paired patient CT and MR image datasets are not available for model training. However, compared to supervised DL models, they cannot guarantee anatomic consistency, especially around bone. PURPOSE: The purpose of this work was to improve the sCT accuracy generated from MRI around bone for MROP. METHODS: To generate more reliable bony structures on sCT images, we proposed to add bony structure constraints in the unsupervised CycleGAN model's loss function and leverage Dixon constructed fat and in-phase (IP) MR images. Dixon images provide better bone contrast than T2-weighted images as inputs to a modified multi-channel CycleGAN. A private dataset with a total of 31 prostate cancer patients were used for training (20) and testing (11). RESULTS: We compared model performance with and without bony structure constraints using single- and multi-channel inputs. Among all the models, multi-channel CycleGAN with bony structure constraints had the lowest mean absolute error, both inside the bone and whole body (50.7 and 145.2 HU). This approach also resulted in the highest Dice similarity coefficient (0.88) of all bony structures compared with the planning CT. CONCLUSION: Modified multi-channel CycleGAN with bony structure constraints, taking Dixon-constructed fat and IP images as inputs, can generate clinically suitable sCT images in both bone and soft tissue. The generated sCT images have the potential to be used for accurate dose calculation and patient positioning in MROP radiation therapy.


Subject(s)
Radiotherapy, Intensity-Modulated , Male , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Pelvis , Image Processing, Computer-Assisted/methods
4.
J Contemp Brachytherapy ; 15(1): 57-68, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36970435

ABSTRACT

Purpose: Suitable commissioning and quality control (QC) tests for high-dose-rate brachytherapy (HDR-BT) is necessary to ensure dosimetric and geometric accuracy of the treatment. This study aimed to present the methodology of developing a novel multi-purpose QC phantom (AQuA-BT) and examples of its' application in 3D image-based (particularly magnetic resonance imaging [MRI]-based) planning for cervix BT. Material and methods: Design criteria led to a phantom with sufficient size waterproof box for dosimetry and capability for inserting other components inside the phantom for: (A) Validating dose calculation algorithms in treatment planning systems (TPSs) using a small-volume ionization chamber; (B) Testing volume calculation accuracy in TPSs for bladder, rectum, and sigmoid organs at risk (OARs) constructed by 3D printing; (C) Quantification of MRI distortions using 17 semi-elliptical plates with 4,317 control points to mimic a realistic female's pelvis size; and (D) Quantification of image distortions and artifacts induced by MRI-compatible applicators using a specific radial fiducial marker. The utility of the phantom was tested in various QC procedures. Results: The phantom was successfully implemented for examples of intended QC procedures. The maximum deviation between the absorbed doses to water assessed with our phantom and those calculated by SagiPlan TPS was 1.7%. The mean discrepancy in volumes of TPS-calculated OARs was 1.1%. The differences between known distances within the phantom on MR imaging were within 0.7 mm compared with computed tomography. Conclusions: This phantom is a promising useful tool for dosimetric and geometric quality assurance (QA) in MRI-based cervix BT.

5.
Brachytherapy ; 21(6): 933-942, 2022.
Article in English | MEDLINE | ID: mdl-35933273

ABSTRACT

PURPOSE: To evaluate an iterative metal-artifact reduction (iMAR) algorithm, dual-energy CT (DECT) through virtual monoenergetic images (VMI), and a combination of iMAR and DECT for reducing metal artifact severity (AS) induced by Fletcher titanium applicators used in cervix brachytherapy, the efficacy of which are hitherto unreported. METHODS AND MATERIALS: 120 kVp single-energy CT (SECT) (Siemens) of BEBIG tandem applicators, varying in shape (straight or curved) and diameter (3.5 mm or 5 mm) in a custom-made water-filled phantom, and their DECT images obtained from extrapolation of 80 kVp and 140 kVp, were reconstructed using four methods: DECT through VMI±iMAR, and SECT±iMAR. The DECT images were reconstructed monoenergetically at 70, 150, and 190 keV. AS was evaluated using measured values and statistical analysis. RESULTS: iMAR, DECT, and combined DECT and iMAR reduced AS (p < 0.05). DECT had a lower AS than SECT, even without iMAR (p < 0.025). SECT+iMAR was more effective than DECT-iMAR with VMI at 70 and 190 keV (p < 0.05), whereas showing no statistically significant difference at 150 keV. With DECT and iMAR combined, AS was reduced more effectively compared to the SECT+iMAR or DECT alone. It also reduced the mean interobserver uncertainty by 0.2 mm. CONCLUSIONS: These findings indicate that iMAR reduces the AS caused by Fletcher titanium applicators for both SECT and DECT, a combination of iMAR and DECT is superior to either strategy alone, and at low energies, DECT+iMAR also produces similar artifact reduction. These practical strategies promise more accurate source-position and structure definitions in CT-based gynecological brachytherapy treatment planning.


Subject(s)
Brachytherapy , Titanium , Female , Humans , Tomography, X-Ray Computed/methods , Brachytherapy/methods , Phantoms, Imaging , Artifacts
6.
Brachytherapy ; 21(5): 668-677, 2022.
Article in English | MEDLINE | ID: mdl-35871130

ABSTRACT

PURPOSE: Intracavitary cervical brachytherapy (BT) has transitioned from a two-dimensional nonvolumetric (NV) dosimetry system to three-dimensional computed tomography (CT) and/or magnetic resonance imaging (MRI)-based planning techniques. The purpose of this study is to retrospectively evaluate the relative improvements in image-guided planning strategies over time with regards to dosimetry, survival, and toxicity. METHODS AND MATERIALS: A single site retrospective review of 95 locally advanced cervical cancer patients treated with concurrent chemoradiation and high dose rate BT from 2009 to 2016 were divided into three BT planning groups: point-A based NV dosimetry using CT imaging (n = 37), CT-based volumetric dosimetry (n = 33), and MRI-based volumetric dosimetry (n = 25). Overall survival (OS), progression free survival (PFS), and pelvic control (PC) at 5 years were plotted using Kaplan-Meier curves. Univariate and multivariate (MVA) cox proportional-hazards models calculated hazard-ratios (HZ). Finally, acute and late grade 3-4 toxicities were compared between the cohorts. RESULTS: Both MRI and CT had significantly less D2cc to bowel (p < 0.001) and sigmoid (p < 0.001) compared to NV-based planning. On MVA, age (<60 vs. ≥60 years) was significant for worse 5-year OS (HZ: 2.48) and PC (HZ: 5.25). MRI, with NV as the reference, had significantly improved 5-year OS (HZ: 0.26), PFS (HZ: 0.34) and PC (HZ: 0.16). There was no significant difference in grade ≥3 toxicities between the cohorts. CONCLUSIONS: CT and MRI-based 3D planning had significantly less D2cc to bowel and sigmoid. MRI-based planning had significant improvement in 5-year OS, PFS, and LC compared to NV on MVA.


Subject(s)
Brachytherapy , Uterine Cervical Neoplasms , Brachytherapy/methods , Female , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Retrospective Studies , Tomography, X-Ray Computed/methods , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy
7.
Biomed Phys Eng Express ; 7(2)2021 02 24.
Article in English | MEDLINE | ID: mdl-33545707

ABSTRACT

Background and purpose.Replacing CT imaging with MR imaging for MR-only radiotherapy has sparked the interest of many scientists and is being increasingly adopted in radiation oncology. Although many studies have focused on generating CT images from MR images, only models on data with the same dataset were tested. Therefore, how well the trained model will work for data from different hospitals and MR protocols is still unknown. In this study, we addressed the model generalization problem for the MR-to-CT conversion task.Materials and methods.Brain T2 MR and corresponding CT images were collected from SZSPH (source domain dataset), brain T1-FLAIR, T1-POST MR, and corresponding CT images were collected from The University of Texas Southwestern (UTSW) (target domain dataset). To investigate the model's generalizability ability, four potential solutions were proposed: source model, target model, combined model, and adapted model. All models were trained using the CycleGAN network. The source model was trained with a source domain dataset from scratch and tested with a target domain dataset. The target model was trained with a target domain dataset and tested with a target domain dataset. The combined model was trained with both source domain and target domain datasets, and tested with the target domain dataset. The adapted model used a transfer learning strategy to train a CycleGAN model with a source domain dataset and retrain the pre-trained model with a target domain dataset. MAE, RMSE, PSNR, and SSIM were used to quantitatively evaluate model performance on a target domain dataset.Results.The adapted model achieved best quantitative results of 74.56 ± 8.61, 193.18 ± 17.98, 28.30 ± 0.83, and 0.84 ± 0.01 for MAE, RMSE, PSNR, and SSIM using the T1-FLAIR dataset and 74.89 ± 15.64, 195.73 ± 31.29, 27.72 ± 1.43, and 0.83 ± 0.04 for MAE, RMSE, PSNR, and SSIM using the T1-POST dataset. The source model had the poorest performance.Conclusions.This work indicates high generalization ability to generate synthetic CT images from small training datasets of MR images using pre-trained CycleGAN. The quantitative results of the test data, including different scanning protocols and different acquisition centers, indicated the proof of this concept.


Subject(s)
Deep Learning , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Tomography, X-Ray Computed
8.
Brachytherapy ; 20(1): 136-145, 2021.
Article in English | MEDLINE | ID: mdl-33132073

ABSTRACT

PURPOSE: The purpose of this study is to compare the predicted rate of local control and bladder and rectum toxicity rates for image-guided adaptive brachytherapy plans using a tandem and ovoid (T/O) applicator versus using a simulated hybrid intracavitary/interstitial tandem and ring applicator with needles (T/R + N) for patients with locally advanced cervical cancer (LACC). METHODS AND MATERIALS: Patients with ≥ FIGO Stage IIB locally advanced cervical cancer treated with T/O from a single institution were included. Simulated treatment plans were created with a T/R + N applicator for the best high-risk clinical target volume (CTV) coverage and minimal dose to organs at risk. Three-year local control rate was estimated using published dose-volume effect relationships. Next, the high-risk CTV EQD2 D90 of T/R + N plans were calculated, and bladder and rectum toxicity rates were estimated. Analysis was performed in subpatient groups defined based on tumor volume and ratio of maximal and minimal tumor radii (RR) that reflects tumor shape asymmetry. RESULTS: Improvements in predicted local control rate for the T/R + N were 0.8, 4.1, 1.6, and 3.9% for groups with tumor volume <35 cc, ≥35 cc, RR < 2.0, and ≥2.0, respectively, with the latter three being statistically significant. Predicted reductions in Grade 2-4 toxicity rates of bladder and rectum were significant in all groups except bladder toxicity in tumor volume <35 cc, when T/R + N plans were normalized to the same CTV coverage as the T/O plans. Comparing unnormalized T/R + N plans and T/O plans, predicted toxicity reductions were significant in all groups except rectum toxicity in RR ≥ 2.0. Predicted reduction of toxicity rate was larger for patients with large tumor or large tumor RR, although some reductions were relatively small. CONCLUSIONS: Cases with large tumor (volume ≥35 cc) or large tumor asymmetry (RR ≥ 2.0) would probably benefit more from the use of hybrid applicators.


Subject(s)
Brachytherapy , Uterine Cervical Neoplasms , Brachytherapy/methods , Female , Humans , Needles , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Uterine Cervical Neoplasms/radiotherapy
9.
Phys Med ; 77: 21-29, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32768917

ABSTRACT

PURPOSE: Correct commissioning of treatment planning systems (TPSs) is important for reducing treatment failure events. There is currently no comprehensive and robust methodology available for TPS commissioning in modern brachytherapy. This review aimed to develop a comprehensive template for commissioning modern 3D-image-based brachytherapy TPSs for high dose rate (HDR) gynaecological applications. METHODS: The literature relevant to TPS commissioning, including both external beam radiation therapy (EBRT) and brachytherapy, as well as guidelines by the International Atomic Energy Agency (IAEA), the American Association of Physicists in Medicine (AAPM), and the European Society for Radiotherapy and Oncology (ESTRO) were searched, studied and appraised. The applied relevant EBRT TPS commissioning tests were applied to brachytherapy. The developed template aimed to cover all dosimetric and non-dosimetric issues. RESULTS: The essential commissioning items could be categorized into six parts: geometry, dose calculation, plan evaluation tools, plan optimization, TPS output, and end-to-end verification. The final template consists of 43 items. This paper presents the purpose and role of each test, as well as tolerance limits, to facilitate the use of the template. CONCLUSION: The information and recommendations available in a collection of publications over many years have been reviewed in order to develop a comprehensive template for commissioning complex modern 3D-image-based brachytherapy TPSs for HDR gynaecological applications. The up-to-date and concise information contained in the template can aid brachytherapy physicists during TPS commissioning as well as devising a regular quality assurance program and allocation of time and resources.


Subject(s)
Brachytherapy , Radiation Oncology , Imaging, Three-Dimensional , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
10.
J Appl Clin Med Phys ; 21(5): 76-86, 2020 May.
Article in English | MEDLINE | ID: mdl-32216098

ABSTRACT

PURPOSE: The purpose of this study was to address the dosimetric accuracy of synthetic computed tomography (sCT) images of patients with brain tumor generated using a modified generative adversarial network (GAN) method, for their use in magnetic resonance imaging (MRI)-only treatment planning for proton therapy. METHODS: Dose volume histogram (DVH) analysis was performed on CT and sCT images of patients with brain tumor for plans generated for intensity-modulated proton therapy (IMPT). All plans were robustly optimized using a commercially available treatment planning system (RayStation, from RaySearch Laboratories) and standard robust parameters reported in the literature. The IMPT plan was then used to compute the dose on CT and sCT images for dosimetric comparison, using RayStation analytical (pencil beam) dose algorithm. We used a second, independent Monte Carlo dose calculation engine to recompute the dose on both CT and sCT images to ensure a proper analysis of the dosimetric accuracy of the sCT images. RESULTS: The results extracted from RayStation showed excellent agreement for most DVH metrics computed on the CT and sCT for the nominal case, with a mean absolute difference below 0.5% (0.3 Gy) of the prescription dose for the clinical target volume (CTV) and below 2% (1.2 Gy) for the organs at risk (OARs) considered. This demonstrates a high dosimetric accuracy for the generated sCT images, especially in the target volume. The metrics obtained from the Monte Carlo doses mostly agreed with the values extracted from RayStation for the nominal and worst-case scenarios (mean difference below 3%). CONCLUSIONS: This work demonstrated the feasibility of using sCT generated with a GAN-based deep learning method for MRI-only treatment planning of patients with brain tumor in intensity-modulated proton therapy.


Subject(s)
Brain Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Humans , Magnetic Resonance Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed
11.
Radiother Oncol ; 136: 56-63, 2019 07.
Article in English | MEDLINE | ID: mdl-31015130

ABSTRACT

PURPOSE: This study assessed the dosimetric accuracy of synthetic CT images generated from magnetic resonance imaging (MRI) data for focal brain radiation therapy, using a deep learning approach. MATERIAL AND METHODS: We conducted a study in 77 patients with brain tumors who had undergone both MRI and computed tomography (CT) imaging as part of their simulation for external beam treatment planning. We designed a generative adversarial network (GAN) to generate synthetic CT images from MRI images. We used Mutual Information (MI) as the loss function in the generator to overcome the misalignment between MRI and CT images (unregistered data). The model was trained using all MRI slices with corresponding CT slices from each training subject's MRI/CT pair. RESULTS: The proposed GAN method produced an average mean absolute error (MAE) of 47.2 ±â€¯11.0 HU over 5-fold cross validation. The overall mean Dice similarity coefficient between CT and synthetic CT images was 80% ±â€¯6% in bone for all test data. Though training a GAN model may take several hours, the model only needs to be trained once. Generating a complete synthetic CT volume for each new patient MRI volume using a trained GAN model took only one second. CONCLUSIONS: The GAN model we developed produced highly accurate synthetic CT images from conventional, single-sequence MRI images in seconds. Our proposed method has strong potential to perform well in a clinical workflow for MRI-only brain treatment planning.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Deep Learning , Radiotherapy Planning, Computer-Assisted/methods , Bone and Bones/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Radiotherapy Dosage , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods , Tomography, X-Ray Computed/methods
12.
Phys Med Biol ; 63(24): 245015, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30523973

ABSTRACT

Accurate segmentation of prostate and surrounding organs at risk is important for prostate cancer radiotherapy treatment planning. We present a fully automated workflow for male pelvic CT image segmentation using deep learning. The architecture consists of a 2D organ volume localization network followed by a 3D segmentation network for volumetric segmentation of prostate, bladder, rectum, and femoral heads. We used a multi-channel 2D U-Net followed by a 3D U-Net with encoding arm modified with aggregated residual networks, known as ResNeXt. The models were trained and tested on a pelvic CT image dataset comprising 136 patients. Test results show that 3D U-Net based segmentation achieves mean (±SD) Dice coefficient values of 90 (±2.0)%, 96 (±3.0)%, 95 (±1.3)%, 95 (±1.5)%, and 84 (±3.7)% for prostate, left femoral head, right femoral head, bladder, and rectum, respectively, using the proposed fully automated segmentation method.


Subject(s)
Pelvis/diagnostic imaging , Prostate/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Rectum/diagnostic imaging , Tomography, X-Ray Computed , Urinary Bladder/diagnostic imaging , Automation , Deep Learning , Femur Head/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Male , Reproducibility of Results , Risk
13.
Phys Med Biol ; 63(5): 05TR01, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29393071

ABSTRACT

Over the past decade, the application of magnetic resonance imaging (MRI) has increased, and there is growing evidence to suggest that improvements in the accuracy of target delineation in MRI-guided radiation therapy may improve clinical outcomes in a variety of cancer types. However, some considerations should be recognized including patient motion during image acquisition and geometric accuracy of images. Moreover, MR-compatible immobilization devices need to be used when acquiring images in the treatment position while minimizing patient motion during the scan time. Finally, synthetic CT images (i.e. electron density maps) and digitally reconstructed radiograph images should be generated from MRI images for dose calculation and image guidance prior to treatment. A short review of the concepts and techniques that have been developed for implementation of MRI-only workflows in radiation therapy is provided in this document.


Subject(s)
Magnetic Resonance Imaging/methods , Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Humans , Neoplasms/pathology , Prognosis
15.
Med Phys ; 44(12): 6538-6547, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28940520

ABSTRACT

PURPOSE: To evaluate plan quality of a novel MRI-compatible direction modulated brachytherapy (DMBT) tandem applicator using 192 Ir, 60 Co, and 169 Yb HDR brachytherapy sources, for various cervical cancer high-risk clinical target volumes (CTVHR ). MATERIALS AND METHODS: The novel DMBT tandem applicator has six peripheral grooves of 1.3-mm diameter along a 5.4-mm thick nonmagnetic tungsten alloy rod. Monte Carlo (MC) simulations were used to benchmark the dosimetric parameters of the 192 Ir, 60 Co, and 169 Yb HDR sources in a water phantom against the literature data. 45 clinical cases that were treated using conventional tandem-and-ring applicators with 192 Ir source (192 Ir-T&R) were selected consecutively from intErnational MRI-guided BRAchytherapy in CErvical cancer (EMBRACE) trial. Then, for each clinical case, 3D dose distribution of each source inside the DMBT and conventional applicators were calculated and imported onto an in-house developed inverse planning optimization code to generate optimal plans. All plans generated by the DMBT tandem-and-ring (DMBT T&R) from all three sources were compared to the respective 192 Ir-T&R plans. For consistency, all plans were normalized to the same CTVHR D90 achieved in clinical plans. The D2 cm3 for organs at risk (OAR) such as bladder, rectum, and sigmoid, and D90, D98, D10, V100, and V200 for CTVHR were calculated. RESULTS: In general, plan quality significantly improved when a conventional tandem (Con.T) is replaced with the DMBT tandem. The target coverage metrics were similar across 192 Ir-T&R and DMBT T&R plans with all three sources (P > 0.093). 60 Co-DMBT T&R generated greater hot spots and less dose homogeneity in the target volumes compared with the 192 Ir- and 169 Yb-DMBT T&R plans. Mean OAR doses in the DMBT T&R plans were significantly smaller (P < 0.0084) than the 192 Ir-T&R plans. Mean bladder D2 cm3 was reduced by 4.07%, 4.15%, and 5.13%, for the 192 Ir-, 60 Co-, and 169 Yb-DMBT T&R plans respectively. Mean rectum (sigmoid) D2 cm3 was reduced by 3.17% (3.63%), 2.57% (3.96%), and 4.65% (4.34%) for the 192 Ir-, 60 Co-, and 169 Yb-DMBT T&R plans respectively. The DMBT T&R plans with the 169 Yb source generally resulted in the greatest OAR sparing when the CTVHR were larger and irregular in shape, while for smaller and regularly shaped CTVHR (<30 cm3 ), OAR sparing between the sources were comparable. CONCLUSIONS: The DMBT tandem provides a promising alternative to the Con.T design with significant improvement in the plan quality for various target volumes. The DMBT T&R plans generated with the three sources of varying energies generated superior plans compared to the conventional T&R applicators. Plans generated with the 169 Yb-DMBT T&R produced best results for larger and irregularly shaped CTVHR in terms of OAR sparing. Thus, this study suggests that the combination of the DMBT tandem applicator with varying energy sources can work synergistically to generate improved plans for cervical cancer brachytherapy.


Subject(s)
Brachytherapy , Cobalt Radioisotopes/therapeutic use , Iridium Radioisotopes/therapeutic use , Radioisotopes/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Uterine Cervical Neoplasms/radiotherapy , Ytterbium/therapeutic use , Brachytherapy/adverse effects , Cobalt Radioisotopes/adverse effects , Female , Humans , Iridium Radioisotopes/adverse effects , Monte Carlo Method , Organs at Risk/radiation effects , Radioisotopes/adverse effects , Ytterbium/adverse effects
16.
Med Phys ; 44(9): 4687-4694, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28644905

ABSTRACT

PURPOSE: To introduce a new realistic human skull phantom for the validation of synthetic CT images of cortical bone from ultra-short echo-time (UTE) sequences. METHODS: A human skull of an adult female was utilized as a realistic representation of skull cortical bone. The skull was stabilized in a special acrylic container and was filled with contrast agents that have T1 and T2 relaxation times similar to human brain. The phantom was MR scanned at 3T with UTE and T2 -weighted sequences, followed by CT. A clustering approach was developed to extract the cortical bone signal from MR images. T2∗ maps of the skull were calculated. Synthetic CT images of the bone were compared to cortical bone signal extracted from CT images and confounding factors, such as registration errors, were analyzed. RESULTS: Dice similarity coefficient (DSC) of UTE-detected cortical bone was 0.84 and gradually decreased with decreasing number of spokes. DSC did not significantly depend on echo-time. Registration errors were found to be significant confounding factors, with 25% decrease in DSC for consistent 2 mm error at each axis. CONCLUSION: This work introduced a new realistic human skull phantom, specifically for the evaluation and analysis of synthetic CT images of cortical bone.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Female , Humans , Reproducibility of Results , Skull/diagnostic imaging , Tomography, X-Ray Computed
17.
Int J Radiat Oncol Biol Phys ; 96(2): 440-448, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27598809

ABSTRACT

PURPOSE: To perform a comprehensive comparative planning study evaluating the utility of the proposed direction modulated brachytherapy (DMBT) tandem applicator against standard applicators, in the setting of image guided adaptive brachytherapy of cervical cancer. METHODS AND MATERIALS: A detailed conceptual article was published in 2014. The proposed DMBT tandem applicator has 6 peripheral grooves of 1.3-mm width, along a 5.4-mm-thick nonmagnetic tungsten alloy rod of density 18.0 g/cm(3), capable of generating directional dose profiles. We performed a comparative planning study with 45 cervical cancer patients enrolled consecutively in the prospective observational EMBRACE study. In all patients, MRI-based planning was performed while utilizing various tandem-ring (27 patients) and tandem-ring-needles (18 patients) applicators, in accordance with the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology recommendations. For unbiased comparisons, all cases were replanned with an in-house-developed inverse optimization code while enforcing a uniform set of constraints that are reflective of the clinical practice. All plans were normalized to the same high-risk clinical target volume D90 values achieved in the original clinical plans. RESULTS: In general, if the standard tandem was replaced with the DMBT tandem while maintaining all other planning conditions the same, there was consistent improvement in the plan quality. For example, among the 18 tandem-ring-needles cases, the average D2cm(3) reductions achieved were -2.48% ± 11.03%, -4.45% ± 5.24%, and -5.66% ± 6.43% for the bladder, rectum, and sigmoid, respectively. An opportunity may also exist in avoiding use of needles altogether for when the total number of needles required is small (approximately 2 to 3 needles or less), if DMBT tandem is used. CONCLUSIONS: Integrating the novel DMBT tandem onto both intracavitary and intracavitary-interstitial applicator assembly enabled consistent improvement in the sparing of the OARs, over a standard "single-channel" tandem, though individual variations in benefit were considerable. Although at an early stage of development, the DMBT concept design is demonstrated to be useful and pragmatic for potential clinical translation.


Subject(s)
Brachytherapy/instrumentation , Prosthesis Implantation/instrumentation , Radioisotopes/administration & dosage , Radiotherapy Planning, Computer-Assisted/methods , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/radiotherapy , Brachytherapy/methods , Equipment Design , Equipment Failure Analysis , Female , Humans , Middle Aged , Prosthesis Implantation/methods , Radiotherapy Dosage
18.
J Appl Clin Med Phys ; 17(5): 34-46, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27685109

ABSTRACT

To create a comprehensive dataset of peripheral dose (PD) measurements from a new generation of linear accelerators with and without the presence of a newly designed fetal shield, PD measurements were performed to evaluate the effects of depth, field size, distance from the field edge, collimator angle, and beam modi-fiers for common treatment protocols and modalities. A custom fetal lead shield was designed and made for our department that allows external beam treatments from multiple angles while minimizing the need to adjust the shield during patient treatments. PD measurements were acquired for a comprehensive series of static fields on a stack of Solid Water. Additionally, PDs from various clinically relevant treatment scenarios for pregnant patients were measured using an anthropomorphic phantom that was abutted to a stack of Solid Water. As expected, the PD decreased as the distance from the field edge increased and the field size decreased. On aver-age, a PD reduction was observed when a 90° collimator rotation was applied and/or when the tertiary MLCs and jaws defined the field aperture. However, the effect of the collimator rotation (90° versus 0°) in PD reduction was not found to be clini-cally significant when the tertiary MLCs were used to define the field aperture. In the presence of both the MLCs and the fetal shield, the PD was reduced by 58% at a distance of 10 cm from the field edge. The newly designed fetal shield may effectively reduce fetal dose and is relatively easy to setup. Due to its design, we are able to use a broad range of treatment techniques and beam angles. We believe the acquired comprehensive PD dataset collected with and without the fetal shield will be useful for treatment teams to estimate fetal dose and help guide decisions on treat-ment techniques without the need to perform pretreatment phantom measurements.


Subject(s)
Fetus/radiation effects , Neoplasms/radiotherapy , Phantoms, Imaging , Radiation Injuries/prevention & control , Radiation Protection/instrumentation , Female , Humans , Pregnancy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Scattering, Radiation
19.
J Contemp Brachytherapy ; 8(4): 363-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27648092

ABSTRACT

The importance of assessing the metal-induced artefacts in magnetic resonance imaging (MRI)-guided brachytherapy is growing along with the increasing interest of integrating MRI into the treatment procedure of cervical cancer. Examples of metal objects in use include intracavitary cervical applicators and interstitial needles. The induced artefacts increase the uncertainties in the clinical workflow and can be a potential obstacle for the accurate delivery of the treatment. Overcoming this problem necessitates a good understanding of its originating sources. Several efforts are recorded in the literature to quantify the extent of such artefacts, in phantoms and in clinical practice. Here, we elaborate on the origin of metal-induced artefacts in the light of brachytherapy applications, while summarizing recent efforts that have been made to assess and overcome the induced distortions.

20.
Radiother Oncol ; 120(3): 500-506, 2016 09.
Article in English | MEDLINE | ID: mdl-27443448

ABSTRACT

BACKGROUND AND PURPOSE: The purpose of this work is to quantitatively investigate the artifacts and image distortions induced in the MR images by a recently proposed direction modulated brachytherapy (DMBT) tandem applicator prototype. This new MRI-compatible applicator allows better sparing of organs-at-risk (OAR) for cervical cancer patients, while providing conformal dose distributions to target volumes. MATERIALS AND METHODS: Specific phantom and tools were designed and manufactured for this study. The phantom was filled with a tissue-like solution and MR images were acquired with clinical protocols as per GEC-ESTRO recommendations. Images were obtained at 6 different orientations that mimic possible clinical settings and full-width-at-half-maximum (FWHM) was recorded at multiple locations/angles. The accuracy of detecting the centerline of the tandem was assessed using a novel radial-fiducials mount. RESULTS: FWHM from all line profiles at all angles and all orientations was 6.14±0.7mm (compared to 6mm of the actual DMBT tandem diameter). The in-plane spatial-shift observed at para-axial and para-sagittal views was less than 0.5mm. CONCLUSIONS: This work demonstrated that the novel DMBT tandem applicator prototype has minimal artifact in T2-weighted images employed in clinical practice, suggesting the applicator might be a good candidate for MRI-guided adaptive brachytherapy.


Subject(s)
Brachytherapy/instrumentation , Magnetic Resonance Imaging/methods , Radiotherapy, Image-Guided/instrumentation , Uterine Cervical Neoplasms/radiotherapy , Artifacts , Brachytherapy/methods , Equipment Design , Female , Humans , Organ Sparing Treatments/instrumentation , Organ Sparing Treatments/methods , Organs at Risk , Phantoms, Imaging , Radiotherapy, Image-Guided/methods , Uterine Cervical Neoplasms/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...