Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Anal Bioanal Chem ; 413(11): 3069-3079, 2021 May.
Article in English | MEDLINE | ID: mdl-33723626

ABSTRACT

Mitigation of the peroxide explosive threat, specifically triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD), is a priority among the law enforcement community, as scientists and canine (K9) units are constantly working to improve detection. We propose the use of paper spray ionization-high-resolution mass spectrometry (PSI-HRMS) for detection of peroxide explosives in biological matrices. Occurrence of peroxide explosives and/or their metabolites in biological samples, obtained from urine or blood tests, give scientific evidence of peroxide explosives exposure. PSI-HRMS promote analysis of samples in situ by eliminating laborious sample preparation steps. However, it increases matrix background issues, which were overcome by the formation of multiple alkali metal adducts with the peroxide explosives. Multiple ion formation increases confidence when identifying these peroxide explosives in direct sample analysis. Our previous work examined aspects of TATP metabolism. Herein, we investigate the excretion of a TATP glucuronide conjugate in the urine of bomb-sniffing dogs and demonstrate its detection using PSI from the in vivo sample.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/analysis , Explosive Agents/analysis , Heterocyclic Compounds, 1-Ring/analysis , Mass Spectrometry/methods , Peroxides/analysis , Animals , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Bridged Bicyclo Compounds, Heterocyclic/toxicity , Chromatography, High Pressure Liquid/methods , Dogs , Explosive Agents/metabolism , Explosive Agents/toxicity , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/toxicity , Microsomes, Liver/metabolism , Occupational Exposure , Paper , Peroxides/chemistry , Peroxides/toxicity
2.
Xenobiotica ; 51(4): 394-403, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33439760

ABSTRACT

Triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) are prominent explosive threats. Mitigation of peroxide explosives is a priority among the law enforcement community, with canine (K9) units being trained to recognise the scent of peroxide explosives. Herein, the metabolism, blood distribution, and toxicity of peroxide explosives are investigated.HMTD metabolism studies in liver microsomes identified two potential metabolites, tetramethylene diperoxide diamine alcohol aldehyde (TMDDAA) and tetramethylene peroxide diamine dialcohol dialdehyde (TMPDDD).Blood stability studies in dogs and humans showed that HMTD was rapidly degraded, whereas TATP remained for at least one week.Toxicity studies in dog and human hepatocytes indicated minimum cell death for both TATP and HMTD.


Subject(s)
Explosive Agents , Animals , Bridged Bicyclo Compounds, Heterocyclic , Dogs , Explosive Agents/toxicity , Heterocyclic Compounds, 1-Ring/toxicity , Humans , Peroxides/toxicity
3.
Forensic Sci Int ; 313: 110344, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32593110

ABSTRACT

In this follow-up study the collaboration between two research groups from the USA and the Netherlands was continued to expand the framework of chemical attribution for the homemade explosive erythritol tetranitrate (ETN). Isotope ratio mass spectrometry (IRMS) analysis was performed to predict possible links between ETN samples and its precursors. Carbon, nitrogen, hydrogen and oxygen isotope ratios were determined for a wide variety of precursor sources and for ETN samples that were prepared with selected precursors. The stability of isotope ratios of ETN has been demonstrated for melt-cast samples and two-year old samples, which enables sample comparison of ETN in forensic casework independent of age and appearance. Erythritol and nitric acid (or nitrate salt) are the exclusive donor of carbon and nitrogen atoms in ETN, respectively, and robust linear relationships between precursor and the end-product were observed for these isotopes. This allowed for defining isotopic enrichment ranges for carbon and nitrogen that support the hypothesis that a given erythritol or nitrate precursor was used to synthesize a specific ETN batch. The hydrogen and oxygen atoms in ETN do not originate from one exclusive donor material, making linkage prediction more difficult. However, the large negative enrichments observed for both isotopes do provide powerful information to exclude suspected precursor materials as donor of ETN. Additionally, combing the isotopic data of all elements results in a higher discrimination power for ETN samples and its precursor materials. Combining the findings of our previously reported LC-MS analysis of ETN with this IRMS study is expected to increase the robustness of the forensic comparison even further. The partially nitrated impurities can provide insight on the synthesis conditions while the isotope data contain information on the raw materials used for the production of ETN.

4.
Forensic Sci Int ; 307: 110102, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31884003

ABSTRACT

Erythritol tetranitrate (ETN) was prepared independently by two research groups from the USA and the Netherlands. The partially nitrated impurities present in ETN were studied using liquid chromatography-mass spectrometry to address the ultimate challenge in forensic explosives investigations, i.e., providing chemical and tactical information on the production and origin of the explosive material found at a crime scene. Accurate quantification of the tri-nitrated byproduct erythritol trinitrate (ETriN) was achieved by in-lab production of an ETriN standard and using custom-made standards of the two isomers of ETriN (1,2,3-ETriN and 1,2,4-ETriN). Large differences in levels of ETriN were observed between the two sample sets showing that, even when similar synthesis routes are employed, batches from different production locations can contain different impurity profiles. In one of the sample sets the ratios of the lesser partially nitrated impurities, EDiN and EMN, in the ETN samples could be determined. The impurity profiles enable prediction of post-synthesis work-up steps by reduction of the level of partially nitrated products upon recrystallization. However, impurity analysis does not enable predictions with respect to raw material or synthesis route used. Nonetheless, characteristic impurity profiles obtained can be used in forensic casework to differentiate or link ETN samples. However, forensic interpretation can be complicated by acid catalyzed degradation which can cause changes in impurity levels over time. The high food-grade quality of the erythritol precursor materials did not provide other impurity markers using the LC-MS methods in this study. To expand our framework of chemical attribution a follow-up study will be reported that focuses on stable isotope analysis of ETN and its precursor materials that potentially allow predictions for forensic explosives intelligence.

5.
J Am Soc Mass Spectrom ; 29(4): 675-684, 2018 04.
Article in English | MEDLINE | ID: mdl-29372553

ABSTRACT

Our efforts to lower the detection limits of hexamethylene triperoxide diamine (HMTD) have uncovered previously unreported gas-phase reactions of primary and secondary amines with one of the six methylene carbons. The reaction occurs primarily in the atmospheric pressure chemical ionization (APCI) source and is similar to the behavior of alcohols with HMTD [1]. However, unlike alcohols, the amine reaction conserves the hydrogen peroxide on the intact product. Furthermore, with or without amines, HMTD is oxidized to tetramethylene diperoxide diamine dialdehyde (TMDDD) in a temperature-dependent fashion in the APCI source. Synthesized TMDDD forms very strong adducts (not products) to ammonium and amine ions in the electrospray ionization (ESI) source. Attempts to improve HMTD detection by generating TMDDD in the APCI source with post-column addition of amines were not successful. Signal intensity of the solvent related HMTD product in methanol, [HMTD+MeOH2-H2O2]+ (m/z 207.0975), was understandably related to the amount of methanol in the HMTD environment as it elutes into the source. With conditions optimized for this product, the detection of 100 pg on column was accomplished with a robust analysis of 300 pg (1.44 pmol) routinely performed on the Orbitrap mass spectrometers. Graphical Abstract ᅟ.

6.
J Am Soc Mass Spectrom ; 29(2): 393-404, 2018 02.
Article in English | MEDLINE | ID: mdl-29116585

ABSTRACT

Over the last several decades, mass spectrometry has become one of the principle methods for compound identification and quantification. While for analytical purposes, fragments which are not fully characterized in terms of origin and intensity as a function of experimental conditions have been used, understanding the nature of those species is very important. Herein we discuss such issues relative to triacetone triperoxide (TATP) and its frequently observed fragment at m/z 89. This "fragment" has been identified as the gas-phase reaction product of TATP with one or two methanol molecules/ions. Additionally, the origin and conditions of other fragments at m/z 91, 75, and 74 associated with TATP will be addressed. Similar analytical issues associated with other multi-peroxide organic compounds [hexamethylene triperoxide diamine (HMTD), methyl ethyl ketone peroxides (MEKP)] will also be discussed. Solution storage conditions for TATP, HMTD, and tetramethylene diperoxide diamine dialdehyde have been determined. Graphical Abstract ᅟ.

7.
J Forensic Sci ; 63(1): 86-101, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28542917

ABSTRACT

Pipe bombs of steel or PVC fragment in reproducible patterns when similarly configured. The power of the explosion correlates with number, mass, and size of the fragments recovered, where a large number of small, low-mass fragments indicate a high-power event and vice versa. In discussing performance, describing pipe fragmentation pattern by fragment weight distribution mapping (FWDM) or fragment surface area distribution mapping (FSADM) was useful. When fillers detonated, detonation velocities of ~4.4 mm/µs were measured. In such cases, side walls of the pipe were thrown first; the average fragment velocity was ~1000 km/s. In deflagrations, the end cap was first thrown; fragment velocities were only ~240 km/s. Blast overpressures varied; at 10 feet, 2 × 12 inch steel pipes containing ~550 g of detonable mixture produced overpressures of 5-6 psi; similar nondetonating pipes produced less than 2 psi. Maximum fragment throw distances were 250-300 m, with an average of ~100 m.

8.
J Am Soc Mass Spectrom ; 27(11): 1796-1804, 2016 11.
Article in English | MEDLINE | ID: mdl-27576486

ABSTRACT

Efforts to analyze trace levels of cyclic peroxides by liquid chromatography/mass spectrometry gave evidence that acetonitrile suppressed ion formation. Further investigations extended this discovery to ketones, linear peroxides, esters, and possibly many other types of compounds, including triazole and menadione. Direct ionization suppression caused by acetonitrile was observed for multiple adduct types in both electrospray ionization and atmospheric pressure chemical ionization. The addition of only 2% acetonitrile significantly decreased the sensitivity of analyte response. Efforts to identify the mechanism were made using various nitriles. The ion suppression was reduced by substitution of an acetonitrile hydrogen with an electron-withdrawing group, but was exacerbated by electron-donating or steric groups adjacent to the nitrile. Although current theory does not explain this phenomenon, we propose that polar interactions between the various functionalities and the nitrile may be forming neutral aggregates that manifest as ionization suppression. Graphical Abstract ᅟ.

9.
Rapid Commun Mass Spectrom ; 29(1): 74-80, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25462366

ABSTRACT

RATIONALE: Hexamethylene triperoxide diamine (HMTD) is a sensitive peroxide explosive first synthesized in 1885. HMTD exhibits an unusual gas-phase phenomenon in the presence of alcohols that has been previously observed, but incorrectly resolved. We are attempting to determine this specific mechanism. METHODS: We used positive ion mode atmospheric pressure chemical ionization (APCI) as the interface to the mass spectrometer. HMTD was infused with various solvents including (18) O- and (2) H-labeled methanol in order to determine gas-phase reaction mechanisms. RESULTS: Based on these labeled experiments, it was determined that, under APCI conditions, the alcohol oxygen attacks a methylene carbon of HMTD and releases H2 O2 . This was attempted with nine different alcohols and, in each case, the alcohol is fully incorporated into the molecule with the peroxide release. A mechanism for this reaction has been proposed. CONCLUSIONS: This work appears to have confirmed the gas-phase reaction mechanism of HMTD with alcohols. As we continue efforts to characterize this unusual molecule, the information may prove useful in determining formation and degradation mechanism(s). In addition, this property of HMTD may find use in other fields of science.

10.
Anal Bioanal Chem ; 403(2): 401-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22382857

ABSTRACT

Triacetone triperoxide (TATP) is a high explosive synthesized from easily available reactants making it accessible for illicit uses. In this study, fast detection of TATP is achieved using a novel planar solid-phase microextraction (PSPME) as a preconcentration and sampling device for headspace analysis offering improved sensitivity and reduced sampling time over the conventional fiber-based solid-phase microextraction (SPME) when followed by ion mobility spectrometer (IMS) detection. Quantitation and comparison of the retention capabilities of PSPME as compared to the commercially available SPME were determined using TATP standards and analyzed using gas chromatography-mass spectrometry for SPME analysis and a commercial IMS with no instrumental modification for PSPME. Static and dynamic headspace extractions were used and compared for PSPME extractions, in which low milligram quantities of TATP were detected within 30 s of static mode sampling and less than 5 s in the dynamic mode sampling for PSPME-IMS.


Subject(s)
Explosive Agents/analysis , Explosive Agents/isolation & purification , Heterocyclic Compounds, 1-Ring/analysis , Heterocyclic Compounds, 1-Ring/isolation & purification , Peroxides/analysis , Peroxides/isolation & purification , Solid Phase Microextraction/methods , Mass Spectrometry
11.
J Forensic Sci ; 57(3): 623-35, 2012 May.
Article in English | MEDLINE | ID: mdl-22235760

ABSTRACT

This study extends previous work on the sorption of explosives to the hair matrix. Specifically, we have studied the interaction of 2,4,6-trinitrotoluene (TNT) and triacetone triperoxide (TATP) as a function of chemical pretreatment with acetonitrile, neutral and alkaline hydrogen peroxide, methanolic KOH and potassium permanganate, and the morphological changes that accompany these treatments. While differences in vapor pressure can account for quantitative differences between TNT and TATP sorption, both are markedly affected by the chemical rinses. Examination of the hair surface shows different degrees of smoothening following rinsing, suggesting that the attachment to hair is largely a surface phenomenon involving the 18-methyleicosanoic acid lipid layer. Density functional theory calculations were employed to explore possible nucleation sites of TATP microcrystals on the hair. We conclude that some of the sites on melanin granular surfaces may support nucleation of TATP microcrystals. Moreover, the calculations support the experimental finding that dark hair adsorbs explosives better than light hair.


Subject(s)
Explosive Agents/analysis , Hair/chemistry , Heterocyclic Compounds, 1-Ring/analysis , Peroxides/analysis , Trinitrotoluene/analysis , Acetonitriles , Ethnicity , Hair/ultrastructure , Hair Color , Humans , Hydrogen Peroxide , Methanol , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Solvents
12.
J Phys Chem A ; 115(38): 10565-75, 2011 Sep 29.
Article in English | MEDLINE | ID: mdl-21838283

ABSTRACT

The safe decomposition of solid TATP (triacetone triperoxide) explosive is examined theoretically. The route to destruction starts with formation of metal complexes between a metal ion and the TATP molecule. The second step is decomposition of the molecules into stable final products. We examined the structure and stability of both metal ion (including Na(+), Cu(+), Cu(2+), Co(2+), and Zn(2+)) and proton complexes with TATP using quantum chemical calculations at the DFT-PBE0 level of theory. In addition, for each ion complex, we determined the initial steps in the pathway to decomposition together with the associated transition states. We find that the products of decomposition, in particular, acetone, are also stabilized by ion metal complexes. In agreement with experiment, we find the best candidates for metal ion induced decomposition are Cu(2+) and Zn(2+).


Subject(s)
Heterocyclic Compounds, 1-Ring/chemistry , Metals, Heavy/chemistry , Peroxides/chemistry , Ions/chemistry , Models, Molecular , Molecular Structure , Quantum Theory
13.
J Forensic Sci ; 54(5): 1029-33, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19737243

ABSTRACT

Chemicals containing multiple peroxide functionalities, such as triacetone triperoxide (TATP), diacetone diperoxide (DADP), or hexamethylene triperoxide diamine (HMTD), can be explosive. They are impractical and are not used by legitimate military groups because they are shock and heat sensitive compared to military explosives. They are attractive to terrorists because synthesis is straightforward, requiring only a few easily obtained ingredients. Physical removal of these synthesis products is highly hazardous. This paper discusses methods to degrade peroxide explosives chemically, at room temperature. A number of mixtures containing metals (e.g., zinc, copper) and metal salts (e.g., zinc sulfate, copper chloride) were found effective, some capable of destroying TATP solutions in a few hours. Strong acids proved useful against solid peroxide materials; however, on a 1 g scale, addition of concentrated sulfuric acid caused TATP to detonate. Thus, this technique should only be used to destroy small-laboratory quantities.

14.
J Environ Manage ; 90(11): 3629-34, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19643526

ABSTRACT

When an explosive detonates or a propellant or flare burns, consumption of the energetic filler should be complete but rarely is, especially in the presence of large amounts of non-combustible materials. Herein we examine three types of perchlorate-containing devices to estimate their potential as sources of contamination in their normal mode of functioning. Road flares, rocket propellants and ammonium nitrate (AN) emulsion explosives are potentially significant anthropogenic sources of perchlorate contamination. This laboratory evaluated perchlorate residue from burning of flares and propellants as well as detonations of ammonium nitrate emulsion explosives. Residual perchlorate in commercial products ranged from 0.094mg perchlorate per gram material (flares) to 0.012mg perchlorate per gram material (AN emulsion explosives). The rocket propellant formulations, prepared in this laboratory, generated 0.014mg of perchlorate residue per gram of material.


Subject(s)
Aerosol Propellants/chemistry , Explosive Agents/chemistry , Perchlorates/chemistry , Transportation , Environmental Monitoring
15.
Appl Spectrosc ; 62(8): 906-15, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18702865

ABSTRACT

A comparative study of the vibrational spectroscopy of peroxide-based explosives is presented. Triacetone triperoxide (TATP) and hexamethyl-enetriperoxide-diamine (HMTD), now commonly used by terrorists, are examined as well as other peroxide-ring structures: DADP (diacetone diperoxide); TPTP [3,3,6,6,9,9-Hexaethyl-1,2,4,5,7,8-hexaoxo-nonane (tripentanone triperoxide)]; DCypDp {6,7,13,14-Tetraoxadispiro [4.2.4.2]tetradecane (dicyclopentanone diperoxide)}; TCypDp {6,7,15,16,22,23-Hexaoxatrispiro[4.2.4.2.4.2] henicosane (tricyclopentanone triperoxide)}; DCyhDp {7,8,15,16-tetraoxadispiro [5.2.5.2] hexadecane (dicyclohexanone diperoxide)}; and TCyhTp {7,8,14,15,21,22-hexaoxatrispiro [5.2.5.2.5.2] tetracosane (tricyclohexanone triperoxide)}. Both Raman and infrared (IR) spectra were measured and compared to theoretical calculations. The calculated spectra were obtained by calculation of the harmonic frequencies of the studied compounds, at the density functional theory (DFT) B3LYP/cc-pVDZ level of theory, and by the use of scaling factors. It is found that the vibrational features related to the peroxide bonds are strongly mixed. As a result, the spectrum is congested and highly sensitive to minor changes in the molecule.


Subject(s)
Explosive Agents/chemistry , Peroxides/chemistry , Spectrum Analysis, Raman/methods , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Molecular Conformation , Spectrophotometry, Infrared/methods
16.
J Forensic Sci ; 53(3): 690-3, 2008 May.
Article in English | MEDLINE | ID: mdl-18471216

ABSTRACT

Conventional explosives 2,4,6-trinitrotoluene (TNT), nitroglycerin (NG), and ethylene glycol dinitrate (EGDN) sorbed to hair can be directly detected by an ion mobility spectrometer (IMS) in E-mode (for explosives). Terrorist explosive, triacetone triperoxide (TATP), difficult to detect by IMS in E-mode, was detected in N-mode (for narcotics). Three modes of sample introduction to IMS vapor desorption unit were used: (i) placement of hair directly into the unit, (ii) swabbing of hair and placement of swabs (i.e., paper GE-IMS sample traps) into the unit, and (iii) acetonitrile extracts of hair positioned on sample traps and placed into the unit. TNT, NG, and EGDN were detected in E-mode by all three sample introduction methods. TATP could only be detected by the acetonitrile extraction method after exposure of the hair to vapor for 16 days because of lower sensitivity. With standard solutions, TATP detection in E-mode required about 10 times as much sample as EGDN (3.9 mug compared with 0.3 mug). IMS in N-mode detected TATP from hair by all three modes of sample introduction.


Subject(s)
Explosive Agents/analysis , Hair/chemistry , Mass Spectrometry , Ethylene Glycols/analysis , Ethylene Glycols/chemistry , Explosive Agents/chemistry , Forensic Medicine/methods , Heterocyclic Compounds, 1-Ring/analysis , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Molecular Structure , Nitroglycerin/analysis , Nitroglycerin/chemistry , Peroxides/analysis , Peroxides/chemistry , Trinitrotoluene/analysis , Trinitrotoluene/chemistry
17.
J Forensic Sci ; 52(6): 1291-6, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18093063

ABSTRACT

This study examines the sorption of eight explosives (2,4,6-trinitrotoluene [TNT]; pentaerythritol tetranitrate [PETN]; hexahydro-1,3,5-trinitro-s-triazine [RDX]; diacetone diperoxide [DADP]; triacetone triperoxide [TATP]; ethylene glycol [EGDN], nitroglycerin [NG]; and 2,4-dinitrotoluene [DNT]) to human hair. The study uses only cut hair, which is exposed to explosive vapor. The vapor transfer studies reported herein indicated that hair did not reach saturation even after 2.5 years of exposure to TNT. While previous studies showed black hair sorbed more explosive than blond or brown, this study reports that red hair sorption is similar to black, while grey hairs, exposed along with black hair from the same individual, sorbed significantly less explosive than the same individual's black hairs. In a study using only black hair, a slight racial bias was observed with sorption greater for Mongoloid hair as compared to Caucasian or Negroid. Only for Mongoloid hairs were enough samples studied to examine for a gender bias, but one was not observed. There was much variability in results in all categories (hair color, race, and gender) that trends were established only in general terms. Hair at different ages was tested for a few individuals. Detailed studies focused on the sorption of TATP and TNT as these appear to be sorbed most differently-TATP mainly on the hair surface and TNT both on the surface and in the cortex. The uptake of high vapor pressure explosives (e.g., TATP) and moderate vapor pressure explosives (e.g., TNT) by hair was rapid and could be detected within about 1 h of exposure. Both explosives were readily sorbed by pure melanin.


Subject(s)
Explosive Agents/analysis , Hair/chemistry , Adsorption , Age Factors , Dinitrobenzenes/analysis , Ethylene Glycol/analysis , Forensic Medicine , Hair Color , Heterocyclic Compounds, 1-Ring/analysis , Humans , Nitroglycerin/analysis , Pentaerythritol Tetranitrate/analysis , Peroxides/analysis , Racial Groups , Triazines/analysis , Volatilization
18.
J Forensic Sci ; 50(4): 826-31, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16078483

ABSTRACT

The sorption of explosives (TNT, RDX, PETN, TATP, EGDN) to hair during exposure to their vapors is examined. Three colors of hair were simultaneously exposed to explosive vapor. Following exposure of hair, the sorbed explosive was removed by extraction with acetonitrile and quantified. Results show that sorption of explosives, via vapor diffusion, to black hair is significantly greater than to blond, brown or bleached hair. Furthermore, the rate of sorption is directly related to the vapor density of the explosive: EGDN > TATP >>>TNT >> PETN > RDX. In some cases, the explosive-containing hair was subject to repeated washings with sodium dodecylsulfate or simply left out in an open area to determine the persistence of the explosive contamination. While explosive is removed from hair with time or washing, some persists. These results indicate that hair can be a useful indicator of explosive exposure/handling.


Subject(s)
Explosions , Forensic Medicine , Hair/chemistry , Ethylene Glycols/analysis , Heterocyclic Compounds, 1-Ring/analysis , Humans , Pentaerythritol Tetranitrate/analysis , Peroxides/analysis , Triazines/analysis , Trinitrotoluene/analysis , Volatilization
19.
J Forensic Sci ; 48(4): 742-53, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12877289

ABSTRACT

Post-blast residues are potential interferents to chemical detection of landmines. To assess the potential problem related to 2,4,6-trinitrotoluene (TNT), its post-blast residue was identified and quantified. In the first part of this study laboratory-scale samples of TNT (2 g) were detonated in a small-scale explosivity device (SSED) to evaluate the explosive power and collect post-blast residue for chemical analysis. Initiator size was large relative to the TNT charge; thus, issues arose regarding choice of initiator, residue from the initiator, and afterburning of TNT. The second part of this study detonated 75 to 150 g of military-grade TNT (typical of antipersonnel mines) in 55-gal barrels containing various witness materials (metal plates, sand, barrel walls, the atmosphere). The witness materials were analyzed for explosive residue. In a third set of tests, 75-g samples of TNT were detonated over soil (from Fort Leonard Wood or Sandia National Laboratory) in an indoor firing chamber (100 by 4.6 by 2.7 m high). Targeted in these studies were TNT and four explosive-related compounds (ERC): 2,4-dinitrotoluene (DNT), 1,3-dinitrobenzene (DNB), 2- and 4-aminodinitrotoluene (2-ADNT and 4-ADNT). The latter two are microbial degradation products of TNT. Post-blast residue was allowed to age in the soils as a function of moisture contents (5 and 10%) in order to quantify the rate of degradation of the principal residues (TNT, DNT, and DNB) and formation of the TNT microbial degradation products (2-ADNT and 4-ADNT). The major distinction between landmine leakage and post-blast residue was not the identity of the species but relative ratios of amounts. In landmine leakage the DNT/TNT ratio was usually greater than 1. In post-blast residue it was on the order of 1 to 1/100th of a percent, and the total amount of pre-blast residue (landmine leakage) was a factor of 1/100 to 1/1000 less than post-blast. In addition, landmine leakage resulted in low DNT/ADNT ratios, usually less than 1, whereas pre-blast residues started with ratios above 20. Because with time DNT decreased and ADNT increased, over a month the ratio decreased by a factor of 2. The rate of TNT degradation in soil observed in this study was much slower than that reported when initial concentrations of TNT were lower. Degradation rates yielded half-lives of 40 and 100 days for 2,4-DNT and TNT, respectively.

20.
J Forensic Sci ; 48(2): 334-42, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12664991

ABSTRACT

This study sought to assign a rough order of magnitude for the amount of explosive residue likely to be available in real-world searches for clandestine explosives. A variety of explosives (TNT, TATP, HMX, AN, RDX, PETN) in various forms (powder, flake, detonating cord, plastic) were carefully weighed or cut into containers, and the amount of residue inadvertently remaining on the work area, hands, or containers was quantified. This was used to evaluate the spillage potential of each explosive. The adhesion of each explosive to a glass surface was quantified from amount of explosive adhering to the inside of a glass vial into which the explosive had been placed and then removed by vigorous tapping. In powdered form, most of the explosives--TNT, PETN, RDX, HMX, and TATP--exhibited similar spillage and adhesion to glass. However, PETN as sheet explosive and plasticized RDX (C-4), showed very little potential to contaminate surfaces, either by spillage or adhesion to glass.

SELECTION OF CITATIONS
SEARCH DETAIL