Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Immunother Cancer ; 9(3)2021 03.
Article in English | MEDLINE | ID: mdl-33741729

ABSTRACT

BACKGROUND: Multiple myeloma (MM) remains an incurable disease and oncolytic viruses offer a well-tolerated addition to the therapeutic arsenal. Oncolytic reovirus has progressed to phase I clinical trials and its direct lytic potential has been extensively studied. However, to date, the role for reovirus-induced immunotherapy against MM, and the impact of the bone marrow (BM) niche, have not been reported. METHODS: This study used human peripheral blood mononuclear cells from healthy donors and in vitro co-culture of MM cells and BM stromal cells to recapitulate the resistant BM niche. Additionally, the 5TGM1-Kalw/RijHSD immunocompetent in vivo model was used to examine reovirus efficacy and characterize reovirus-induced immune responses in the BM and spleen following intravenous administration. Collectively, these in vitro and in vivo models were used to characterize the development of innate and adaptive antimyeloma immunity following reovirus treatment. RESULTS: Using the 5TGM1-Kalw/RijHSD immunocompetent in vivo model we have demonstrated that reovirus reduces both MM tumor burden and myeloma-induced bone disease. Furthermore, detailed immune characterization revealed that reovirus: (i) increased natural killer (NK) cell and CD8+ T cell numbers; (ii) activated NK cells and CD8+ T cells and (iii) upregulated effector-memory CD8+ T cells. Moreover, increased effector-memory CD8+ T cells correlated with decreased tumor burden. Next, we explored the potential for reovirus-induced immunotherapy using human co-culture models to mimic the myeloma-supportive BM niche. MM cells co-cultured with BM stromal cells displayed resistance to reovirus-induced oncolysis and bystander cytokine-killing but remained susceptible to killing by reovirus-activated NK cells and MM-specific cytotoxic T lymphocytes. CONCLUSION: These data highlight the importance of reovirus-induced immunotherapy for targeting MM cells within the BM niche and suggest that combination with agents which boost antitumor immune responses should be a priority.


Subject(s)
Bone Marrow/immunology , CD8-Positive T-Lymphocytes/immunology , Killer Cells, Natural/immunology , Multiple Myeloma/therapy , Oncolytic Virotherapy , Oncolytic Viruses/immunology , Reoviridae/immunology , Spleen/immunology , Tumor Microenvironment/immunology , Animals , Bone Marrow/virology , CD8-Positive T-Lymphocytes/virology , Cell Line, Tumor , Coculture Techniques , Cytokines/immunology , Cytotoxicity, Immunologic , Female , Humans , Killer Cells, Natural/virology , Male , Mice, Inbred C57BL , Multiple Myeloma/immunology , Multiple Myeloma/virology , Oncolytic Viruses/pathogenicity , Reoviridae/pathogenicity , Spleen/virology , Tumor Escape
2.
Int J Cancer ; 148(12): 3032-3040, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33521927

ABSTRACT

Proteasome inhibitor (PI) therapy has improved the survival of multiple myeloma (MM) patients. However, inevitably, primary or acquired resistance to PIs leads to disease progression; resistance mechanisms are unclear. Obesity is a risk factor for MM mortality. Oxidized LDL (OxLDL), a central mediator of atherosclerosis that is elevated in metabolic syndrome (co-occurrence of obesity, insulin resistance, dyslipidemia and hypertension), has been linked to an increased risk of solid cancers and shown to stimulate pro-oncogenic/survival signaling. We hypothesized that OxLDL is a mediator of chemoresistance and evaluated its effects on MM cell killing by PIs. OxLDL potently suppressed the ability of the boronic acid-based PIs bortezomib (BTZ) and ixazomib, but not the epoxyketone-based PI carfilzomib, to kill human MM cell lines and primary cells. OxLDL suppressed BTZ-induced inhibition of proteasome activity and induction of pro-apoptotic signaling. These cytoprotective effects were abrogated when lipid hydroperoxides (LOOHs) associated with OxLDL were enzymatically reduced. We also demonstrated the presence of OxLDL in the MM bone marrow microenvironment as well as numerous granulocytes and monocytes capable of cell-mediated LDL oxidation through myeloperoxidase. Our findings suggest that OxLDL may be a potent mediator of boronic acid-based PI resistance, particularly for MM patients with metabolic syndrome, given their elevated systemic levels of OxLDL. LDL cholesterol-lowering therapy to reduce circulating OxLDL, and pharmacologic targeting of LOOH levels or resistance pathways induced by the modified lipoprotein, could deepen the response to these important agents and offer clinical benefit to MM patients with metabolic syndrome.


Subject(s)
Drug Resistance, Neoplasm , Lipoproteins, LDL/metabolism , Multiple Myeloma/metabolism , Proteasome Inhibitors/pharmacology , Boron Compounds/pharmacology , Bortezomib/pharmacology , Cell Line, Tumor , Glycine/analogs & derivatives , Glycine/pharmacology , Granulocytes/metabolism , Humans , Lipid Peroxides/metabolism , Monocytes/metabolism , Multiple Myeloma/drug therapy , Oligopeptides/pharmacology , Proteasome Inhibitors/therapeutic use
3.
Blood ; 134(1): 30-43, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31023703

ABSTRACT

The era of targeted therapies has seen significant improvements in depth of response, progression-free survival, and overall survival for patients with multiple myeloma. Despite these improvements in clinical outcome, patients inevitably relapse and require further treatment. Drug-resistant dormant myeloma cells that reside in specific niches within the skeleton are considered a basis of disease relapse but remain elusive and difficult to study. Here, we developed a method to sequence the transcriptome of individual dormant myeloma cells from the bones of tumor-bearing mice. Our analyses show that dormant myeloma cells express a distinct transcriptome signature enriched for immune genes and, unexpectedly, genes associated with myeloid cell differentiation. These genes were switched on by coculture with osteoblastic cells. Targeting AXL, a gene highly expressed by dormant cells, using small-molecule inhibitors released cells from dormancy and promoted their proliferation. Analysis of the expression of AXL and coregulated genes in human cohorts showed that healthy human controls and patients with monoclonal gammopathy of uncertain significance expressed higher levels of the dormancy signature genes than patients with multiple myeloma. Furthermore, in patients with multiple myeloma, the expression of this myeloid transcriptome signature translated into a twofold increase in overall survival, indicating that this dormancy signature may be a marker of disease progression. Thus, engagement of myeloma cells with the osteoblastic niche induces expression of a suite of myeloid genes that predicts disease progression and that comprises potential drug targets to eradicate dormant myeloma cells.


Subject(s)
Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neoplasm Recurrence, Local/genetics , Neoplastic Stem Cells/pathology , Stem Cell Niche/genetics , Animals , Humans , Mice , Neoplasm Recurrence, Local/pathology , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Transcriptome , Axl Receptor Tyrosine Kinase
4.
Pharmaceutics ; 10(3)2018 Sep 10.
Article in English | MEDLINE | ID: mdl-30201882

ABSTRACT

Multiple myeloma (MM) is the most common cancer affecting the bone and bone marrow and remains incurable for most patients; novel therapies are therefore needed. Bortezomib (Btz) is an FDA-approved drug for the treatment of patients with MM. However, its severe side effects require a dose reduction or the potential discontinuation of treatment. To overcome this limitation, we conjugated Btz to a bisphosphonate (BP) residue lacking anti-osteoclastic activity using a novel chemical linker and generated a new bone-targeted Btz-based (BP-Btz) proteasome inhibitor. We demonstrated that BP-Btz, but not Btz, bound to bone slices and inhibited the growth of MM cells in vitro. In a mouse model of MM, BP-Btz more effectively reduced tumor burden and bone loss with less systemic side effects than Btz. Thus, BP-Btz may represent a novel therapeutic approach to treat patients with MM.

5.
Blood ; 129(26): 3452-3464, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28515094

ABSTRACT

Multiple myeloma (MM) is a plasma cell cancer that develops in the skeleton causing profound bone destruction and fractures. The bone disease is mediated by increased osteoclastic bone resorption and suppressed bone formation. Bisphosphonates used for treatment inhibit bone resorption and prevent bone loss but fail to influence bone formation and do not replace lost bone, so patients continue to fracture. Stimulating bone formation to increase bone mass and fracture resistance is a priority; however, targeting tumor-derived modulators of bone formation has had limited success. Sclerostin is an osteocyte-specific Wnt antagonist that inhibits bone formation. We hypothesized that inhibiting sclerostin would prevent development of bone disease and increase resistance to fracture in MM. Sclerostin was expressed in osteocytes from bones from naive and myeloma-bearing mice. In contrast, sclerostin was not expressed by plasma cells from 630 patients with myeloma or 54 myeloma cell lines. Mice injected with 5TGM1-eGFP, 5T2MM, or MM1.S myeloma cells demonstrated significant bone loss, which was associated with a decrease in fracture resistance in the vertebrae. Treatment with anti-sclerostin antibody increased osteoblast numbers and bone formation rate but did not inhibit bone resorption or reduce tumor burden. Treatment with anti-sclerostin antibody prevented myeloma-induced bone loss, reduced osteolytic bone lesions, and increased fracture resistance. Treatment with anti-sclerostin antibody and zoledronic acid combined increased bone mass and fracture resistance when compared with treatment with zoledronic acid alone. This study defines a therapeutic strategy superior to the current standard of care that will reduce fractures for patients with MM.


Subject(s)
Bone Density/drug effects , Bone Morphogenetic Proteins/antagonists & inhibitors , Fractures, Bone/prevention & control , Osteocytes/chemistry , Osteogenesis/drug effects , Adaptor Proteins, Signal Transducing , Animals , Antibodies/pharmacology , Antibodies/therapeutic use , Bone Morphogenetic Proteins/immunology , Cell Line, Tumor , Diphosphonates/therapeutic use , Genetic Markers/immunology , Humans , Imidazoles/therapeutic use , Mice , Multiple Myeloma/complications , Tumor Cells, Cultured , Zoledronic Acid
6.
Bone ; 91: 81-91, 2016 10.
Article in English | MEDLINE | ID: mdl-27423464

ABSTRACT

Multiple myeloma (MM) patients frequently develop tumor-induced bone destruction, yet no therapy completely eliminates the tumor or fully reverses bone loss. Transforming growth factor-ß (TGF-ß) activity often contributes to tumor-induced bone disease, and pre-clinical studies have indicated that TGF-ß inhibition improves bone volume and reduces tumor growth in bone metastatic breast cancer. We hypothesized that inhibition of TGF-ß signaling also reduces tumor growth, increases bone volume, and improves vertebral body strength in MM-bearing mice. We treated myeloma tumor-bearing (immunocompetent KaLwRij and immunocompromised Rag2-/-) mice with a TGF-ß inhibitory (1D11) or control (13C4) antibody, with or without the anti-myeloma drug bortezomib, for 4weeks after inoculation of murine 5TGM1 MM cells. TGF-ß inhibition increased trabecular bone volume, improved trabecular architecture, increased tissue mineral density of the trabeculae as assessed by ex vivo micro-computed tomography, and was associated with significantly greater vertebral body strength in biomechanical compression tests. Serum monoclonal paraprotein titers and spleen weights showed that 1D11 monotherapy did not reduce overall MM tumor burden. Combination therapy with 1D11 and bortezomib increased vertebral body strength, reduced tumor burden, and reduced cortical lesions in the femoral metaphysis, although it did not significantly improve cortical bone strength in three-point bending tests of the mid-shaft femur. Overall, our data provides rationale for evaluating inhibition of TGF-ß signaling in combination with existing anti-myeloma agents as a potential therapeutic strategy to improve outcomes in patients with myeloma bone disease.


Subject(s)
Bone Diseases/drug therapy , Bone Diseases/etiology , Bone and Bones/pathology , Bortezomib/therapeutic use , Multiple Myeloma/complications , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Bone Diseases/pathology , Bone and Bones/drug effects , Bortezomib/pharmacology , Cancellous Bone/pathology , Cancellous Bone/physiopathology , Cell Count , Cell Line, Tumor , Disease Models, Animal , Drug Therapy, Combination , Mice, Inbred C57BL , Multiple Myeloma/pathology , Osteoblasts/pathology , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Tumor Burden/drug effects
7.
Oncotarget ; 6(25): 21589-602, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26009993

ABSTRACT

Treatment of multiple myeloma with bortezomib can result in severe adverse effects, necessitating the development of targeted inhibitors of the proteasome. We show that stable expression of a dominant-negative F-box deleted (∆F) mutant of the E3 ubiquitin ligase, SCFß-TrCP/FWD1, in murine 5TGM1 myeloma cells dramatically attenuated their skeletal engraftment and survival when inoculated into immunocompetent C57BL/KaLwRij mice. Similar results were obtained in immunodeficient bg-nu-xid mice, suggesting that the observed effects were independent of host recipient immune status. Bone marrow stroma offered no protection for 5TGM1-∆F cells in cocultures treated with tumor necrosis factor (TNF), indicating a cell-autonomous anti-myeloma effect. Levels of p100, IκBα, Mcl-1, ATF4, total and cleaved caspase-3, and phospho-ß-catenin were elevated in 5TGM1-∆F cells whereas cIAP was down-regulated. TNF also activated caspase-3 and downregulated Bcl-2, correlating with the enhanced susceptibility of 5TGM1-∆F cells to apoptosis. Treatment of 5TGM1 tumor-bearing mice with a ß-TrCP1/FWD1 inhibitor, pyrrolidine dithiocarbamate (PDTC), significantly reduced tumor burden in bone. PDTC also increased levels of cleaved Mcl-1 and caspase-3 in U266 human myeloma cells, correlating with our murine data and validating the development of specific ß-TrCP inhibitors as an alternative therapy to nonspecific proteasome inhibitors for myeloma patients.


Subject(s)
Multiple Myeloma/metabolism , Mutation , Ubiquitin-Protein Ligases/genetics , beta-Transducin Repeat-Containing Proteins/genetics , Animals , Apoptosis , Bone Marrow/metabolism , Bone Marrow Cells/cytology , Bortezomib/chemistry , Caspase 3/metabolism , Cell Line, Tumor , Down-Regulation , Enzyme Activation , Female , Genes, Dominant , Humans , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Proteasome Endopeptidase Complex/chemistry , Pyrrolidines/chemistry , Stromal Cells/cytology , Thiocarbamates/chemistry , Tumor Necrosis Factor-alpha/metabolism , Ubiquitin-Protein Ligases/metabolism , beta Catenin/chemistry , beta-Transducin Repeat-Containing Proteins/metabolism
8.
Oncotarget ; 6(12): 10532-47, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25871384

ABSTRACT

Myeloid-derived suppressor cells (MDSC) are contributing to an immunosuppressive environment by their ability to inhibit T cell activity and thereby promoting cancer progression. An important feature of the incurable plasma cell malignancy Multiple Myeloma (MM) is immune dysfunction. MDSC were previously identified to be present and active in MM patients, however little is known about the MDSC-inducing and -activating capacity of MM cells. In this study we investigated the effects of the tumor microenvironment on MDSC survival. During MM progression in the 5TMM mouse model, accumulation of MDSC in the bone marrow was observed in early stages of disease development, while circulating myeloid cells were increased at later stages of disease. Interestingly, in vivo MDSC targeting by anti-GR1 antibodies and 5-Fluorouracil resulted in a significant reduced tumor load in 5TMM-diseased mice. In vitro generation of MDSC was demonstrated by increased T cell immunosuppressive capacity and MDSC survival was observed in the presence of MM-conditioned medium. Finally, increased Mcl-1 expression was identified as underlying mechanism for MDSC survival. In conclusion, our data demonstrate that soluble factors from MM cells are able to generate MDSC through Mcl-1 upregulation and this cell population can be considered as a possible target in MM disease.


Subject(s)
Multiple Myeloma/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis , Animals , Cell Line, Tumor , Disease Progression , Humans , Mice , Mice, Inbred C57BL , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cells/metabolism , Myeloid Cells/pathology , Survival Analysis
9.
Bone ; 52(1): 145-56, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23032104

ABSTRACT

The BMP and Wnt/ß-catenin signaling pathways cooperatively regulate osteoblast differentiation and bone formation. Although BMP signaling regulates gene expression of the Wnt pathway, much less is known about whether Wnt signaling modulates BMP expression in osteoblasts. Given the presence of putative Tcf/Lef response elements that bind ß-catenin/TCF transcription complex in the BMP2 promoter, we hypothesized that the Wnt/ß-catenin pathway stimulates BMP2 expression in osteogenic cells. In this study, we showed that Wnt/ß-catenin signaling is active in various osteoblast or osteoblast precursor cell lines, including MC3T3-E1, 2T3, C2C12, and C3H10T1/2 cells. Furthermore, crosstalk between the BMP and Wnt pathways affected BMP signaling activity, osteoblast differentiation, and bone formation, suggesting Wnt signaling is an upstream regulator of BMP signaling. Activation of Wnt signaling by Wnt3a or overexpression of ß-catenin/TCF4 both stimulated BMP2 transcription at promoter and mRNA levels. In contrast, transcription of BMP2 in osteogenic cells was decreased by either blocking the Wnt pathway with DKK1 and sFRP4, or inhibiting ß-catenin/TCF4 activity with FWD1/ß-TrCP, ICAT, or ΔTCF4. Using a site-directed mutagenesis approach, we confirmed that Wnt/ß-catenin transactivation of BMP2 transcription is directly mediated through the Tcf/Lef response elements in the BMP2 promoter. These results, which demonstrate that the Wnt/ß-catenin signaling pathway is an upstream activator of BMP2 expression in osteoblasts, provide novel insights into the nature of functional cross talk integrating the BMP and Wnt/ß-catenin pathways in osteoblastic differentiation and maintenance of skeletal homeostasis.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Osteoblasts/metabolism , Signal Transduction , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Base Sequence , Cell Line , Cells, Cultured , DNA Primers , Mice , Real-Time Polymerase Chain Reaction
10.
Blood ; 120(7): 1449-57, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22618707

ABSTRACT

The chemokine CCL3/MIP-1α is a risk factor in the outcome of multiple myeloma (MM), particularly in the development of osteolytic bone disease. This chemokine, highly overexpressed by MM cells, can signal mainly through 2 receptors, CCR1 and CCR5, only 1 of which (CCR1) is responsive to CCL3 in human and mouse osteoclast precursors. CCR1 activation leads to the formation of osteolytic lesions and facilitates tumor growth. Here we show that formation of mature osteoclasts is blocked by the highly potent and selective CCR1 antagonist CCX721, an analog of the clinical compound CCX354. We also show that doses of CCX721 selected to completely inhibit CCR1 produce a profound decrease in tumor burden and osteolytic damage in the murine 5TGM1 model of MM bone disease. Similar effects were observed when the antagonist was used prophylactically or therapeutically, with comparable efficacy to that of zoledronic acid. 5TGM1 cells were shown to express minimal levels of CCR1 while secreting high levels of CCL3, suggesting that the therapeutic effects of CCX721 result from CCR1 inhibition on non-MM cells, most likely osteoclasts and osteoclast precursors. These results provide a strong rationale for further development of CCR1 antagonists for the treatment of MM and associated osteolytic bone disease.


Subject(s)
Chemokines/pharmacology , Chemokines/therapeutic use , Multiple Myeloma/drug therapy , Osteolysis/drug therapy , Receptors, CCR1/antagonists & inhibitors , Tumor Burden/drug effects , Administration, Oral , Animals , Cell Death/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cellular Microenvironment/drug effects , Chemokines/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Immunocompetence/drug effects , Inflammation/drug therapy , Inflammation/pathology , Mice , Mice, Inbred C57BL , Models, Biological , Monocytes/drug effects , Monocytes/metabolism , Multiple Myeloma/complications , Multiple Myeloma/pathology , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/pathology , Osteolysis/complications , Osteolysis/pathology , Rats , Receptors, CCR1/metabolism
11.
J Cell Physiol ; 227(3): 952-63, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21503889

ABSTRACT

Signaling pathways for bone morphogenetic proteins (BMPs) are important in osteoblast differentiation. Although the precise function of type I BMP receptors in mediating BMP signaling for osteoblast differentiation and bone formation has been characterized previously, the role of type II BMP receptors in osteoblasts is to be well clarified. In this study, we investigated the role of type II BMP receptor (BMPR-II) and type IIB activin receptor (ActR-IIB) in BMP2-induced osteoblast differentiation. While osteoblastic 2T3 cells expressed BMPR-II and ActR-IIB, loss-of-function studies, using dominant negative receptors and siRNAs, showed that BMPR-II and ActR-IIB compensated each other functionally in mediating BMP2 signaling and BMP2-induced osteoblast differentiation. This was evidenced by two findings. First, unless there was loss of function of both type II receptors, isolated disruption of either BMPR-II or ActR-IIB did not remove BMP2 activity. Second, in cells with loss of function of both receptors, restoration of function of either BMPR-II or ActR-IIB by transfection of the wild-type forms, restored BMP2 activity. These findings suggest a functional redundancy between BMPR-II and ActR-IIB in osteoblast differentiation. Results from experiments to test the effects of transforming growth factor ß (TGF-ß), activin, and fibroblast growth factor (FGF) on osteoblast proliferation and differentiation suggest that inhibition of receptor signaling by double-blockage of BMPR-II and ActR-IIB is BMP-signaling specific. The observed functional redundancy of type II BMP receptors in osteoblasts is novel information about the BMP signaling pathway essential for initiating osteoblast differentiation.


Subject(s)
Activin Receptors, Type I/metabolism , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein Receptors, Type II/physiology , Cell Differentiation/physiology , Osteoblasts/cytology , Osteoblasts/metabolism , Signal Transduction/physiology , Activin Receptors, Type I/genetics , Activins/metabolism , Activins/pharmacology , Animals , Bone Morphogenetic Protein 2/pharmacology , Bone Morphogenetic Protein Receptors, Type II/genetics , Calcification, Physiologic/physiology , Cell Line, Transformed , Mesoderm/cytology , Mice , Mice, Transgenic , Osteoblasts/physiology , RNA, Small Interfering/pharmacology
12.
Mol Cancer Ther ; 11(2): 350-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22090419

ABSTRACT

Bone loss is one of the major complications of advanced cancers such as breast cancer, prostate cancer, and multiple myeloma; agents that can suppress this bone loss have therapeutic potential. Extensive research within the last decade has revealed that RANKL, a member of the tumor necrosis factor superfamily, plays a major role in cancer-associated bone resorption and thus is a therapeutic target. We investigated the potential of vitamin K3 analogue plumbagin (derived from Chitrak, an Ayurvedic medicinal plant) to modulate RANKL signaling, osteoclastogenesis, and breast cancer-induced osteolysis. Plumbagin suppressed RANKL-induced NF-κB activation in mouse monocytes, an osteoclast precursor cell, through sequential inhibition of activation of IκBα kinase, IκBα phosphorylation, and IκBα degradation. Plumbagin also suppressed differentiation of these cells into osteoclasts induced either by RANKL or by human breast cancer or human multiple myeloma cells. When examined for its ability to prevent human breast cancer-induced bone loss in animals, plumbagin (2 mg/kg body weight) administered via the intraperitoneal route significantly decreased osteolytic lesions, resulting in preservation of bone volume in nude mice bearing human breast tumors. Overall, our results indicate that plumbagin, a vitamin K analogue, is a potent inhibitor of osteoclastogenesis induced by tumor cells and of breast cancer-induced osteolytic metastasis through suppression of RANKL signaling.


Subject(s)
Bone Neoplasms/prevention & control , Breast Neoplasms/prevention & control , Naphthoquinones/pharmacology , Osteoclasts/drug effects , RANK Ligand/pharmacology , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Blotting, Western , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Bone Resorption/metabolism , Bone Resorption/prevention & control , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line , Cell Line, Tumor , Female , Humans , I-kappa B Proteins/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , NF-KappaB Inhibitor alpha , NF-kappa B/metabolism , Osteoclasts/metabolism , Osteogenesis/drug effects , Osteolysis , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
13.
PLoS One ; 6(6): e20780, 2011.
Article in English | MEDLINE | ID: mdl-21695256

ABSTRACT

Intermittent application of parathyroid hormone (PTH) has well established anabolic effects on bone mass in rodents and humans. Although transcriptional mechanisms responsible for these effects are not fully understood, it is recognized that transcriptional factor cAMP response element binding protein (CREB) mediates PTH signaling in osteoblasts, and that there is a communication between the PTH-CREB pathway and the BMP2 signaling pathway, which is important for osteoblast differentiation and bone formations. These findings, in conjunction with putative cAMP response elements (CREs) in the BMP2 promoter, led us to hypothesize that the PTH-CREB pathway could be a positive regulator of BMP2 transcription in osteoblasts. To test this hypothesis, we first demonstrated that PTH signaling activated CREB by phosphorylation in osteoblasts, and that both PTH and CREB were capable of promoting osteoblastic differentiation of primary mouse osteoblast cells and multiple rodent osteoblast cell lines. Importantly, we found that the PTH-CREB signaling pathway functioned as an effective activator of BMP2 expression, as pharmacologic and genetic modulation of PTH-CREB activity significantly affected BMP2 expression levels in these cells. Lastly, through multiple promoter assays, including promoter reporter deletion, mutation, chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA), we identified a specific CRE in the BMP2 promoter which is responsible for CREB transactivation of the BMP2 gene in osteoblasts. Together, these results demonstrate that the anabolic function of PTH signaling in bone is mediated, at least in part, by CREB transactivation of BMP2 expression in osteoblasts.


Subject(s)
Bone Morphogenetic Protein 2/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Gene Expression Regulation , Osteoblasts/metabolism , Parathyroid Hormone/metabolism , Signal Transduction , Transcription, Genetic , Animals , Base Sequence , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation/drug effects , Cell Line , Gene Expression Regulation/drug effects , Mice , Molecular Sequence Data , Osteoblasts/cytology , Osteoblasts/drug effects , Parathyroid Hormone/pharmacology , Phosphorylation/drug effects , Promoter Regions, Genetic , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Transcriptional Activation/drug effects , Transcriptional Activation/genetics , Up-Regulation/genetics
14.
J Bone Miner Res ; 26(9): 2052-67, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21557310

ABSTRACT

Cytoskeleton microtubules regulate various cell signaling pathways that are involved in bone cell function. We recently reported that inhibition of microtubule assembly by microtubule-targeting drugs stimulates osteoblast differentiation and bone formation. To further elucidate the role of microtubules in bone homeostasis, we characterized the skeletal phenotype of mice null for stathmin, an endogenous protein that inhibits microtubule assembly. In vivo micro-computed tomography (µCT) and histology revealed that stathmin deficiency results in a significant reduction of bone mass in adult mice concurrent with decreased osteoblast and increased osteoclast numbers in bone tissues. Phenotypic analyses of primary calvarial cells and bone marrow cells showed that stathmin deficiency inhibited osteoblast differentiation and induced osteoclast formation. In vitro overexpression studies showed that increased stathmin levels enhanced osteogenic differentiation of preosteoblast MC3T3-E1 cells and mouse bone marrow-derived cells and attenuated osteoclast formation from osteoclast precursor Raw264.7 cells and bone marrow cells. Results of immunofluorescent studies indicated that overexpression of stathmin disrupted radial microtubule filaments, whereas deficiency of stathmin stabilized the microtubule network structure in these bone cells. In addition, microtubule-targeting drugs that inhibit microtubule assembly and induce osteoblast differentiation lost these effects in the absence of stathmin. Collectively, these results suggest that stathmin, which alters microtubule dynamics, plays an essential role in maintenance of postnatal bone mass by regulating both osteoblast and osteoclast functions in bone. \


Subject(s)
Bone Diseases, Metabolic/metabolism , Bone Diseases, Metabolic/pathology , Bone and Bones/pathology , Microtubules/metabolism , Osteoblasts/metabolism , Osteoclasts/metabolism , Stathmin/deficiency , Animals , Bone Diseases, Metabolic/diagnostic imaging , Bone Morphogenetic Protein 2/metabolism , Bone and Bones/diagnostic imaging , Bone and Bones/metabolism , Cell Differentiation , Kruppel-Like Transcription Factors/metabolism , Mice , Organ Size , Osteoblasts/pathology , Osteoclasts/pathology , Phenotype , Stathmin/metabolism , X-Ray Microtomography , Zinc Finger Protein Gli2
15.
Expert Opin Drug Deliv ; 8(3): 317-28, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21275831

ABSTRACT

INTRODUCTION: Bone marrow-targeted drug delivery systems appear to offer a promising strategy for advancing diagnostic, protective and/or therapeutic medicine for the hematopoietic system. Liposome technology can provide a drug delivery system with high bone marrow targeting that is mediated by specific phagocytosis in bone marrow. AREA COVERED: This review focuses on a bone marrow-specific liposome formulation labeled with technetium-99 m. Interspecies differences in bone marrow distribution of the bone marrow-targeted formulation are emphasized. This review provides a liposome technology to target bone marrow. In addition, the selection of proper species for the investigation of bone marrow targeting is suggested. EXPERT OPINION: It can be speculated that the bone marrow macrophages have a role in the delivery of lipids to the bone marrow as a source of energy and for membrane biosynthesis or in the delivery of fat-soluble vitamins for hematopoiesis. This homeostatic system offers a potent pathway to deliver drugs selectively into bone marrow tissues from blood. High selectivity of the present bone marrow-targeted liposome formulation for bone marrow suggests the presence of an active and specific mechanism, but specific factors affecting the uptake of the bone marrow mononuclear phagocyte system are still unknown. Further investigation of this mechanism will increase our understanding of factors required for effective transport of agents to the bone marrow, and may provide an efficient system for bone marrow delivery for therapeutic purposes.


Subject(s)
Bone Marrow/physiology , Drug Carriers , Drug Delivery Systems , Liposomes/chemistry , Humans
16.
Cancer Res ; 71(3): 822-31, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21189326

ABSTRACT

Breast cancer frequently metastasizes to bone, in which tumor cells receive signals from the bone marrow microenvironment. One relevant factor is TGF-ß, which upregulates expression of the Hedgehog (Hh) signaling molecule, Gli2, which in turn increases secretion of important osteolytic factors such as parathyroid hormone-related protein (PTHrP). PTHrP inhibition can prevent tumor-induced bone destruction, whereas Gli2 overexpression in tumor cells can promote osteolysis. In this study, we tested the hypothesis that Hh inhibition in bone metastatic breast cancer would decrease PTHrP expression and therefore osteolytic bone destruction. However, when mice engrafted with human MDA-MB-231 breast cancer cells were treated with the Hh receptor antagonist cyclopamine, we observed no effect on tumor burden or bone destruction. In vitro analyses revealed that osteolytic tumor cells lack expression of the Hh receptor, Smoothened, suggesting an Hh-independent mechanism of Gli2 regulation. Blocking Gli signaling in metastatic breast cancer cells with a Gli2-repressor gene (Gli2-rep) reduced endogenous and TGF-ß-stimulated PTHrP mRNA expression, but did not alter tumor cell proliferation. Furthermore, mice inoculated with Gli2-Rep-expressing cells exhibited a decrease in osteolysis, suggesting that Gli2 inhibition may block TGF-ß propagation of a vicious osteolytic cycle in this MDA-MB-231 model of bone metastasis. Accordingly, in the absence of TGF-ß signaling, Gli2 expression was downregulated in cells, whereas enforced overexpression of Gli2 restored PTHrP activity. Taken together, our findings suggest that Gli2 is required for TGF-ß to stimulate PTHrP expression and that blocking Hh-independent Gli2 activity will inhibit tumor-induced bone destruction.


Subject(s)
Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Breast Neoplasms/metabolism , Hedgehog Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Nuclear Proteins/metabolism , Parathyroid Hormone-Related Protein/biosynthesis , Transforming Growth Factor beta/pharmacology , Animals , Bone Neoplasms/drug therapy , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Hedgehog Proteins/antagonists & inhibitors , Humans , Kruppel-Like Transcription Factors/antagonists & inhibitors , Mice , Mice, Nude , Nuclear Proteins/antagonists & inhibitors , Recombinant Proteins/pharmacology , Signal Transduction , Veratrum Alkaloids/pharmacology , Zinc Finger Protein Gli2
17.
Am J Hematol ; 84(5): 268-72, 2009 May.
Article in English | MEDLINE | ID: mdl-19296472

ABSTRACT

The proteasome inhibitor bortezomib has a striking clinical benefit in patients with multiple myeloma. It is unknown whether the bone marrow microenvironment directly contributes to the dramatic response of myeloma cells to proteasome inhibition in vivo. We have used the well-characterized 5TGM1 murine model of myeloma to investigate myeloma growth within bone and response to the proteasome inhibitor bortezomib in vivo. Myeloma cells freshly isolated from the bone marrow of myeloma-bearing mice were found to have an increase in proteasome activity and an enhanced response to in vitro proteasome inhibition, as compared with pre-inoculation myeloma cells. Treatment of myeloma-bearing mice with bortezomib resulted in a greater reduction in tumor burden when the myeloma cells were located within the bone marrow when compared with extra-osseous sites. Our results demonstrate that myeloma cells exhibit an increase in proteasome activity and an enhanced response to bortezomib treatment when located within the bone marrow microenvironment in vivo.


Subject(s)
Boronic Acids/pharmacology , Multiple Myeloma/drug therapy , Multiple Myeloma/enzymology , Protease Inhibitors/pharmacology , Proteasome Inhibitors , Pyrazines/pharmacology , Animals , Bone Marrow/pathology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Bortezomib , Cell Communication/drug effects , Cell Line, Tumor , Enzyme Activation , Immunoglobulin G/blood , Mice , Multiple Myeloma/pathology , Neoplasm Transplantation , Proteasome Endopeptidase Complex/metabolism , Tumor Burden/drug effects
18.
Cancer Res ; 69(4): 1477-84, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19190327

ABSTRACT

Receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL) has emerged as a major mediator of bone resorption, commonly associated with cancer and other chronic inflammatory diseases. Inhibitors of RANKL signaling thus have potential in preventing bone loss. In the present report, the potential of zerumbone, a sesquiterpene derived from subtropical ginger, to modulate osteoclastogenesis induced by RANKL and breast cancer was examined. We found that zerumbone inhibited RANKL-induced NF-kappaB activation in mouse monocyte, an osteoclast precursor cell, through inhibition of activation of IkappaBalpha kinase, IkappaBalpha phosphorylation, and IkappaBalpha degradation. Zerumbone also suppressed RANKL-induced differentiation of these cells to osteoclasts. This sesquiterpene also inhibited the osteoclast formation induced by human breast tumor cells and by multiple myeloma cells. Finally, we examined whether zerumbone could prevent human breast cancer-induced bone loss in animals. We found that zerumbone decreased osteolysis in a dose-dependent manner in MDA-MB-231 breast cancer tumor-bearing athymic nude mice. These results indicate that zerumbone is an effective blocker of RANKL-induced NF-kappaB activation and of osteoclastogenesis induced by RANKL and tumor cells, suggesting its potential as a therapeutic agent for osteoporosis and cancer-associated bone loss.


Subject(s)
Bone Resorption/prevention & control , Breast Neoplasms/complications , Cell Differentiation/drug effects , NF-kappa B/metabolism , Osteogenesis/drug effects , Osteoporosis/prevention & control , RANK Ligand/genetics , Sesquiterpenes/therapeutic use , Animals , Bone Resorption/pathology , Female , Humans , Mice , Mice, Nude , NF-kappa B/drug effects , Osteoporosis/drug therapy , RANK Ligand/drug effects , RNA, Messenger/genetics , RNA, Neoplasm/genetics , Reverse Transcriptase Polymerase Chain Reaction
19.
J Biomed Nanotechnol ; 5(2): 202-8, 2009 Apr.
Article in English | MEDLINE | ID: mdl-20055098

ABSTRACT

Polymer-conjugated nanoparticles are an important technology to control the stability, safety, and efficacy in drug delivery systems. Herein, we investigate self-organized mixed assemblies of a lipophilic drug candidate, curcumin (Cm), and a poly(oxyethylene) cholesteryl ether (PEG-Chol). Cm was assembled together with PEG-Chol to form nano-sized assemblies (around 10 nm) of assumed micelles. In contrast with the rapid decomposition of free Cm due to the hydrolysis, the Cm was highly stabilized in the nanoparticles, especially at below 40 mol% Cm. Cell viability assay revealed that the cytotoxic activity of the Cm/PEG-Chol nanoparticles against myeloma cells is higher than those of free Cm in a comparison at 1 microM. On the other hand, both the Cm/PEG-Chol nanoparticles and PEG-Chol micelles had significant cytotoxicity to the myeloma cells at 5 microM. Taken together, the present Cm/PEG-Chol system offers a stable nanoparticle encapsulating Cm which can be injected as a liquid. Cm and vehicle micelles will damage the cancer cells cooperatively.


Subject(s)
Apoptosis/drug effects , Crystallization/methods , Curcumin/administration & dosage , Curcumin/chemistry , Drug Carriers/chemistry , Nanostructures/chemistry , Polyethylene Glycols/chemistry , Animals , Cell Line, Tumor , Humans , Hydrophobic and Hydrophilic Interactions , Macromolecular Substances/chemistry , Materials Testing , Mice , Molecular Conformation , Nanostructures/ultrastructure , Particle Size , Surface Properties
20.
Mol Cell Biol ; 29(5): 1291-305, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19103752

ABSTRACT

Bone morphogenetic protein 2 (BMP-2) is essential for postnatal bone formation and fracture repair. By screening chemical libraries for BMP-2 mimics using a cell-based assay, we identified inhibitors of microtubule assembly as stimulators of BMP-2 transcription. These microtubule inhibitors increased osteoblast differentiation in vitro, stimulated periosteal bone formation when injected locally over murine calvaria, and enhanced trabecular bone formation when administered systemically in vivo. To explore molecular mechanisms mediating these responses, we examined effects of microtubule inhibitors on the hedgehog (Hh) pathway, since this pathway is known to regulate BMP-2 transcription in osteoblasts and microtubules have been shown to be involved in Hh signaling in Drosophila. Here we show that in osteoblasts, inhibition of microtubule assembly increased cytoplasmic levels and transcriptional activity of Gli2, a transcriptional mediator of Hh signaling that we have previously shown to enhance BMP-2 expression in osteoblasts (M. Zhao et al., Mol. Cell. Biol. 26:6197-6208, 2006). Microtubule inhibition blocked beta-TrCP-mediated proteasomal processing of Gli2 in osteoblasts. In summary, inhibition of microtubule assembly enhances BMP-2 gene transcription and subsequent bone formation, in part, through inhibiting proteasomal processing of Gli2 and increasing intracellular Gli2 concentrations.


Subject(s)
Bone Morphogenetic Protein 2/genetics , Kruppel-Like Transcription Factors/physiology , Microtubules/metabolism , Osteoblasts/metabolism , Osteogenesis , Tubulin Modulators/pharmacology , Animals , Cell Differentiation/drug effects , Hedgehog Proteins/metabolism , Mice , Mice, Transgenic , Microtubules/drug effects , Osteoblasts/cytology , Small Molecule Libraries , Transcriptional Activation/drug effects , Tubulin Modulators/administration & dosage , Zinc Finger Protein Gli2
SELECTION OF CITATIONS
SEARCH DETAIL
...