Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731401

ABSTRACT

The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to reports of reduced efficacy and resistance. Therefore, this study seeks to investigate the antischistosomal potential of phytochemicals from Azadirachta indica against proteins that have been implicated as druggable targets for the treatment of schistosomiasis using computational techniques. In this study, sixty-three (63) previously isolated and characterized phytochemicals from A. indica were identified from the literature and retrieved from the PubChem database. In silico screening was conducted to assess the inhibitory potential of these phytochemicals against three receptors (Schistosoma mansoni Thioredoxin glutathione reductase, dihydroorotate dehydrogenase, and Arginase) that may serve as therapeutic targets for schistosomiasis treatment. Molecular docking, ADMET prediction, ligand interaction, MMGBSA, and molecular dynamics simulation of the hit compounds were conducted using the Schrodinger molecular drug discovery suite. The results show that Andrographolide possesses a satisfactory pharmacokinetic profile, does not violate the Lipinski rule of five, binds with favourable affinity with the receptors, and interacts with key amino acids at the active site. Importantly, its interaction with dihydroorotate dehydrogenase, an enzyme responsible for the catalysis of the de novo pyrimidine nucleotide biosynthetic pathway rate-limiting step, shows a glide score and MMGBSA of -10.19 and -45.75 Kcal/mol, respectively. In addition, the MD simulation shows its stability at the active site of the receptor. Overall, this study revealed that Andrographolide from Azadirachta indica could serve as a potential lead compound for the development of an anti-schistosomal drug.


Subject(s)
Azadirachta , Dihydroorotate Dehydrogenase , Molecular Docking Simulation , Oxidoreductases Acting on CH-CH Group Donors , Schistosomiasis , Azadirachta/chemistry , Animals , Schistosomiasis/drug therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Humans , Phytochemicals/pharmacology , Phytochemicals/chemistry , Molecular Dynamics Simulation , Schistosoma mansoni/drug effects , Schistosoma mansoni/enzymology , NADH, NADPH Oxidoreductases/antagonists & inhibitors , NADH, NADPH Oxidoreductases/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Computer Simulation , Schistosomicides/pharmacology , Schistosomicides/chemistry , Schistosomicides/therapeutic use , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/metabolism , Praziquantel/pharmacology , Praziquantel/chemistry , Praziquantel/therapeutic use
2.
Biochem Biophys Rep ; 38: 101735, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38799115

ABSTRACT

Diabetes is a group of medical conditions characterized by the body's inability to effectively control blood glucose levels, due to either insufficient insulin synthesis in type 1 diabetes or inadequate insulin sensitivity in type 2 diabetes. According to this research, the PI3K/AKT pathway of Ocimum gratissimum leaf flavonoid-rich extracts in streptozotocin-induced diabetic rats was studied. We purchased and used a total of forty (40) male Wistar rats for the study. We divided the animals into five (5) different groups: normal control (Group A), diabetic control (Group B), low dose (150 mg/kg body weight) of Ocimum gratissimum flavonoid-rich leaf extract (LDOGFL) (Group C), high dose (300 mg/kg body weight) of Ocimum gratissimum flavonoid-rich leaf extract (HDOGFL) (Group D), and 200 mg/kg of metformin (MET) (Group E). Streptozotocin induced all groups except Group A, which serves as the normal control group. The experiment lasted for 21 days, following which we sacrificed the animals and harvested their brains for biochemical analysis on the 22nd day. We carried out an analysis that included reduced glutathione (GSH), glutathione transferases (GST), catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD), along with GLUT4, MDA, pro-inflammatory cytokines, NO, neurotransmitters, cholinergic enzyme activities, cardiolipin, and the gene expression of PI3K/AKT. The obtained result indicates that the flavonoid-rich extracts of O. gratissimum significantly enhanced the levels of GSH, GST, CAT, GPx, and SOD, as well as GLUT4 and cardiolipin. The levels of GSH, GST, CAT, GPx, and SOD, as well as GLUT4 and cardiolipin, were significantly increased by gratissimum. Moreover, the extracts decrease the levels of MDA, pro-inflammatory cytokines, NO, neurotransmitters, and cholinergic enzyme activities. Additionally, the flavonoid-rich extracts of O. gratissimum significantly improved the AKT and PI3K gene expressions in diabetic rats. gratissimum had their AKT and PI3K gene expressions significantly (p < 0.05) improved. The findings indicate that O. gratissimum leaf flavonoids have the potential to treat diabetes mellitus. gratissimum leaf flavonoids possess therapeutic potential in themselves and can be applied in the management of diabetes mellitus. Although further analysis can be carried out in terms of isolating, profiling, or purifying the active compounds present in the plant's extract.

3.
ACS Omega ; 9(17): 19334-19344, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708257

ABSTRACT

Diabetes-induced kidney damage represents a substantial health hazard, emphasizing the imperative to explore potential therapeutic interventions. This study investigates the nephroprotective activity of flavonoid-rich extracts from Hibiscus sabdariffa leaves in streptozotocin-induced diabetic rats. The flavonoid-rich extracts of H. sabdariffa leaves was obtained using a standard procedure. The animals were induced with streptozotocin and thereafter treated with both low (LDHSFL) and high doses (HDHSFL) of flavonoid-rich extracts from H. sabdariffa leaves and metformin (MET), and other groups are diabetic control (DC) and normal control (NC). The study assesses diverse renal parameters, encompassing kidney redox stress biomarkers, serum electrolyte levels, kidney inflammatory biomarkers, serum concentrations of creatinine, urea, and uric acid, kidney phosphatase activities, renal histopathology, and relative gene expressions of kidney injury molecule-1 (KIM-1) and transforming growth factor beta-1 (TGF-1ß), comparing these measurements with normal and diabetic control groups (NC and DC). The findings indicate that the use of extracts from H. sabdariffa leaves markedly (p < 0.05) enhanced renal well-being by mitigating nephropathy, as demonstrated through the adjustment of various biochemical and gene expression biomarkers, indicating a pronounced antioxidative and anti-inflammatory effect, improved kidney morphology, and mitigation of renal dysfunction. These findings suggest that H. sabdariffa leaf flavonoid extracts exhibit nephroprotective properties, presenting a potential natural therapeutic approach for the treatment of diabetic nephropathy.

4.
Nat Prod Res ; : 1-9, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648537

ABSTRACT

O. gratissimum is one of the most common medicinal plants in every community in Nigeria. This plant has been presumed to be useful in the management of diseases including breast cancer, which is one the commonest cancers affecting women globally. Hence, this study aimed to computationally investigate the phytochemicals present in O. gratissimum by elucidate their binding dynamics against five selected molecular targets of breast cancer and predict their pharmacokinetics properties. Molecular docking, MMGBSA calculation and ADMET prediction were used. The results showed that isovitexin has the highest binding affinity of -9.11 kcal/mol and -9.80 kcal/mol for Human Epidermal Growth Factor Receptor 2 (HER2) and Epidermal Growth Factor Receptor (EGFR) respectively. Rosmarinic acid has the highest binding affinity of -12.15 kcal/mol for Phosphatidylinositol 3-kinase (PI3K), Nepetoidin A has the highest binding affinity of -9.14 kcal/mol for oestrogen receptor (ER), and Vitexin has the highest binding affinity of -12.90 kcal/mol for Progesterone receptor (PR). MMGBSA provided total binding energy that confirmed the stability of the complexes under physiological conditions. The ADMET profiles showed that O. gratissimum top phytochemicals identified would be safe for oral administration with no hepatoxicity. Overall, this study identified isovitexin, vitexin, rosmarinic acid, nepetoidin A and luteolin among others, as compounds that exhibit strong anti-cancer properties against breast cancer cells.

5.
Cell Biochem Biophys ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472715

ABSTRACT

Alzheimer's disease (AD) accounts for a major statistic among the class of neurodegenerative diseases. A number of mechanisms have been identified in its pathogenesis and progression which include the amyloid beta (Aß) aggregation, hyperphosphorylation of tau protein, oxidative stress, endoplasmic reticulum (ER) stress and apoptosis. These processes are interconnected and contribute significantly to the loss of neurons, brain mass and consequential memory loss and other cognitive difficulties. Oxidative stress in AD appears to be caused by excess of oxygen free radicals and extracellular Aß deposits that cause local inflammatory processes and activate microglia, another possible source of reactive oxygen species (ROS). ER Stress describes the accumulation of misfolded and unfolded proteins as a result of physiological and pathological stimuli including high protein demand, toxins, inflammatory cytokines, and mutant protein expression that disturbs ER homeostasis. When compared to age-matched controls, postmortem brain tissues from AD patients showed elevated levels of ER stress markers, such as PERK, eIF2α, IRE1α, the chaperone Grp78, and the downstream mediator of cell death CHOP. Apoptosis is in charge of eliminating unnecessary and undesired cells to maintain good health. However, it has been demonstrated that a malfunctioning apoptotic pathway is a major factor in the development of certain neurological and immunological problems and diseases in people, including neurodegenerative diseases. This article highlights and discussed some of the experimentally established mechanisms through which these processes lead to the development as well as the exacerbation of AD.

6.
Article in English | MEDLINE | ID: mdl-38421410

ABSTRACT

The use of medicinal plants as food and medicine has been a common practice in the world, especially in tropical African countries. One such plant in West Africa is Uvaria chamae, also known as Bush banana, renowned for its diverse ethnomedicinal applications and, more recently, for its pharmacological activities attributed to a rich array of phytochemical constituents. Various parts of the plant have been traditionally employed for the treatment of diverse health issues such as digestive disorders, fever, dysmenorrhea, cancer, wound healing, and many more. To unravel the bioactive compounds responsible for these medicinal properties, a comprehensive phytochemical analysis has been undertaken. Notable isolates include chamanetin, dichamanetin, uvaretin, and uvarinol from different parts of the plant. The pharmacological evaluation of these compounds has revealed significant anticancer and antimicrobial properties. Therefore, this review provides a thorough examination of the phytochemicals derived from Uvaria chamae, detailing their associated pharmacological activities both in vitro and in vivo. The review emphasizes the potential of Uvaria chamae as a valuable source of lead compounds for cancer chemotherapy and antimicrobial drug discovery.

7.
Molecules ; 28(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37570723

ABSTRACT

Glucokinase plays an important role in regulating the blood glucose level and serves as an essential therapeutic target in type 2 diabetes management. Entada africana is a medicinal plant and highly rich source of bioactive ligands with the potency to develop new target drugs for glucokinase such as diabetes and obesity. Therefore, the study explored a computational approach to predict identified compounds from Entada africana following its intermolecular interactions with the allosteric binding site of the enzymes. We retrieved the three-dimensional (3D) crystal structure of glucokinase (PDB ID: 4L3Q) from the online protein data bank and prepared it using the Maestro 13.5, Schrödinger Suite 2022-3. The compounds identified were subjected to ADME, docking analysis, pharmacophore modeling, and molecular simulation. The results show the binding potential of the identified ligands to the amino acid residues, thereby suggesting an interaction of the amino acids with the ligand at the binding site of the glucokinase activator through conventional chemical bonds such as hydrogen bonds and hydrophobic interactions. The compatibility of the molecules was highly observed when compared with the standard ligand, thereby leading to structural and functional changes. Therefore, the bioactive components from Entada africana could be a good driver of glucokinase, thereby paving the way for the discovery of therapeutic drugs for the treatment of diabetes and its related complications.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Molecular Docking Simulation , Glucokinase/metabolism , Ligands , Diabetes Mellitus, Type 2/drug therapy
8.
Molecules ; 28(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36838579

ABSTRACT

The African nutmeg (Monodora myristica) is a medically useful plant. We, herein, aimed to critically examine whether bioactive compounds identified in the extracted oil of Monodora myristica could act as antimicrobial agents. To this end, we employed the Schrödinger platform as the computational tool to screen bioactive compounds identified in the oil of Monodora myristica. Our lead compound displayed the highest potency when compared with levofloxacin based on its binding affinity. The hit molecule was further subjected to an Absorption, Distribution, Metabolism, Excretion (ADME) prediction, and a Molecular Dynamics (MD) simulation was carried out on molecules with PubChem IDs 529885 and 175002 and on three standards (levofloxacin, cephalexin, and novobiocin). The MD analysis results demonstrated that two molecules are highly compact when compared to the native protein; thereby, this suggests that they could affect the protein on a structural and a functional level. The employed computational approach demonstrates that conformational changes occur in DNA gyrase after the binding of inhibitors; thereby, this resulted in structural and functional changes. These findings expand our knowledge on the inhibition of bacterial DNA gyrase and could pave the way for the discovery of new drugs for the treatment of multi-resistant bacterial infections.


Subject(s)
Annonaceae , Anti-Infective Agents , Topoisomerase II Inhibitors , Annonaceae/chemistry , Anti-Infective Agents/pharmacology , DNA Gyrase , Levofloxacin , Topoisomerase II Inhibitors/pharmacology
9.
Life Sci ; 312: 121247, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36450327

ABSTRACT

Mitochondria malfunction is linked to the development of ß-cell failure and a variety of neurodegenerative disorders. Pancreatic ß-cells are normally configured to detect glucose and other food secretagogues in order to adjust insulin exocytosis and maintain glucose homeostasis. As a result of the increased glucose level, mitochondria metabolites and nucleotides are produced, which operate in concert with cytosolic Ca2+ to stimulate insulin secretion. Furthermore, mitochondria are the primary generators of adenosine triphosphate (ATP), reactive oxygen species (ROS), and apoptosis regulation. Mitochondria are concentrated in synapses, and any substantial changes in synaptic mitochondria location, shape, quantity, or function might cause oxidative stress, resulting in faulty synaptic transmission, a symptom of various degenerative disorders at an early stage. However, a greater understanding of the role of mitochondria in the etiology of ß-cell dysfunction and neurodegenerative disorder should pave the way for a more effective approach to addressing these health issues. This review looks at the widespread occurrence of mitochondria depletion in humans, and its significance to mitochondria biogenesis in signaling and mitophagy. Proper understanding of the processes might be extremely beneficial in ameliorating the rising worries about mitochondria biogenesis and triggering mitophagy to remove depleted mitochondria, therefore reducing disease pathogenesis.


Subject(s)
Insulin-Secreting Cells , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/metabolism , Mitochondria/metabolism , Insulin-Secreting Cells/metabolism , Reactive Oxygen Species/metabolism , Adenosine Triphosphate/metabolism , Glucose/metabolism
10.
Bioinform Biol Insights ; 16: 11779322221115546, 2022.
Article in English | MEDLINE | ID: mdl-35966809

ABSTRACT

The antioxidant, cholinergic, monoaminergic, and purinergic activities of flavonoid-rich extract from Dalbergiella welwitschii leaf (FEDW) were investigated on oxidative testicular injury (ex vivo) due to the local report on the use of this plant as anti-testicular injury. Flavonoid extract was obtained from FEDW using a standard procedure. Five male albino rats were used, testes harvested and incubated with FeSO4 for accessing the cholinergic, monoaminergic, and purinergic activities of the FEDW (ex vivo). Testicular tissues incubated with FeSO4 demonstrated a significant decrease in antioxidant biomarkers, arginase, ATPase, ENTPDase, 5'-nucleotidase, and PDE-5 activities, as well as Zn and sialic acid levels with an upsurge in malondialdehyde (MDA), and NO levels, myeloperoxidase, cholinesterases, monoamine oxidase (MAO), and angiotensin-converting enzyme (ACE) activities. Treatment of testicular tissues incubated with FeSO4 via different concentrations of FEDW significantly increased the activities of antioxidant, arginase, ATPase, E-NTPDase, 5'-nucleotidase, phosphodiesterase-5 (PDE-5), as well as Zn and sialic acid levels with a significant decrease in MDA, nitric oxide (NO), myeloperoxidase, cholinesterases, MAO, and ACE levels. Molecular docking revealed the molecular interactions of cyclooxygenase-2 (COX-2) with ellagic acid, piperine, and caffeine with piperine and caffeine obeyed the druggability and pharmacokinetic. These findings point to FEDW as a possible potential for the treatment of oxidative testicular injury.

11.
Mol Biol Rep ; 49(9): 8391-8400, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35759083

ABSTRACT

BACKGROUND: This study assessed the hepatoprotective potential of flavonoid-rich extracts from Gongronema latifolium Benth on diabetes-induced type 2 rats via Fetuin-A and tumor necrosis factor-alpha (TnF-α). METHODS: In a standard procedure, the flavonoid-rich extract was prepared. For experimental rats, streptozotocin was injected intraperitoneally (45 mg/kg body weight) to induce diabetes mellitus. Following this, rats were given 5% of glucose water for 24 h. Hence, the animals were randomly divided into five groups of ten rats each, consisting of non-diabetic rats, diabetic controls, diabetic rats treated with low and high doses of flavonoid rich-extracts from Gongronema latifolium leaf (FREGL) (13 and 26 mg/kg, respectively), and diabetic rats treated with 200 mg/kg of metformin glibenclamide orally for 3 weeks. Afterwards, the animals were sacrificed, blood and liver were harvested to evaluate different biochemical parameters, hepatic gene expressions and histological examinations. RESULTS: The results revealed that FREGL (especially at the low dose) significantly (p < 0.05) reduced alanine transaminase (ALT), aspartate aminotransferase (AST) and alkaline phosphate (ALP) activities, lipid peroxidation level, as well as relative gene expressions of fetuin-A and TNF-α in diabetic rats. Furthermore, diabetic rats given various doses of FREGL showed an increase in antioxidant enzymes and hexokinase activity, as well as glucose transporters (GLUT 2 and GLUT 4), and glycogen levels. In addition, histoarchitecture of the liver of diabetic rats administered FREGL (especially at the low dose) was also ameliorated. CONCLUSION: Hence, FREGL (particularly at a low dose) may play a substantial role in mitigating the hepatopathy complication associated with diabetes mellitus.


Subject(s)
Apocynaceae , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Apocynaceae/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Flavonoids/metabolism , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Liver/metabolism , Plant Extracts/therapeutic use , Plant Leaves/metabolism , Rats , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , alpha-2-HS-Glycoprotein/metabolism
12.
Adv Pharm Bull ; 12(2): 366-374, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35620338

ABSTRACT

Purpose: Universal stress protein (USP) from Schistosoma mansoni, designated as G4LZI3, waspreviously hypothesised as a druggable target and vaccine candidate for human schistosomiasis.The purpose of this study is to characterize a purified recombinant G4LZI3 preliminarily forsubsequent structural characterization, which will provide baseline structural data for futurefunctional studies for the discovery, design and development of new schistosomal drugs for thetreatment, control and elimination of schistosomiasis. Methods: Restriction digest analysis of a GenScript-synthesised codon-optimised G4LZI3gene construct was carried out to ascertain its integrity and size. Thereafter, the pQE30-G4LZI3 construct was transformed into an M15 bacterial expression host. Transformed cellswere induced with isopropyl ß-D-thiogalactoside for recombinant protein expression of anappreciable amount of pQE30-G4LZI3, which was subsequently purified with fast proteinliquid chromatography (FPLC) and a size exclusion chromatographic purification scheme.Preliminary biophysical characterization of the 6X His-tagged G4LZI3 was done to determineits secondary structure characteristics and protein stability. Results: A molecular weight protein of 20.3 kDa was confirmed subsequent to restriction digestanalysis, while heterologous protein expression yielded a highly soluble and considerableamount of histidine-tagged G4LZI3 protein, which was successfully purified to homogeneity.Biophysical characterization indicated that the protein was well folded, heat-stable, had thefunctional groups and secondary structure composition required and was thus amenable tofurther structural characterization and determination. Conclusion: Biophysical characterization of purified G4LZI3 showed that further structuralstudies can be embarked upon on the use of G4LZI3 as a druggable target and possibly avaccine target against schistosomiasis via vaccinomics.

13.
J Food Biochem ; 46(8): e14172, 2022 08.
Article in English | MEDLINE | ID: mdl-35437796

ABSTRACT

In this research, the beneficial roles of aqueous leaf extract of Solanum macrocarpon (SM) on diabetic cardiomyopathy were evaluated. Diabetic rats (induced with alloxan) were given varying doses of SM aqueous leaves extract for 28 days, and the animals were sacrificed. A series of diabetic cardiomyopathy parameters were determined. Diabetic rats showed hyperglycemia, hyperlipidemia, with a momentous upsurge in lactate dehydrogenase, creatine kinase, cardiac troponin I activities as well as inflammatory markers. Also, diabetic rats demonstrated a substantial decline in the activities of antioxidant enzymes in relation to other groups. Administration of different doses of SM aqueous leaf extract to diabetic rats demonstrated normoglycemia, normolipidemia, reduced the activities of lactate dehydrogenase, creatine kinase, cardiac troponin I, and inflammatory levels as well as an increase in the antioxidant enzyme activities. In conclusion, the results suggest that SM aqueous leaf extract ameliorates diabetic cardiomyopathy. PRACTICAL APPLICATIONS: This study examined the role of Solanum macrocarpon (SM) aqueous leaf extract in diabetic cardiomyopathy. Results revealed that SM might be useful in ameliorating diabetic cardiomyopathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Solanum nigrum , Solanum , Animals , Antioxidants/pharmacology , Creatine Kinase , Diabetes Mellitus, Experimental/drug therapy , Diabetic Cardiomyopathies/drug therapy , Inflammation/drug therapy , Lactate Dehydrogenases , Oxidative Stress , Plant Extracts/pharmacology , Rats , Rats, Wistar , Troponin I
14.
Sci Rep ; 12(1): 2919, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35190649

ABSTRACT

The treatment of diabetes involves the use of herbal plants, attracting interest in their cost-effectiveness and efficacy. An aqueous extract of Persea americana seeds (AEPAS) was explored in this study as a possible therapeutic agent in rats with diabetes mellitus. The induction of diabetes in the rats was achieved by injecting 65 mg/kg body weight (BWt) of alloxan along with 5% glucose. This study was conducted using thirty-six (36) male Wistar rats. The animals were divided into 6 equal groups, (n = 6) and treated for 14 days. In vitro assays for total flavonoid, phenols, FRAP, DPPH, NO, α-amylase, and α-glucosidase, were performed. Biochemical indices fasting blood sugar (FBS), BWt, serum insulin, liver hexokinase, G6P, FBP, liver glycogen, IL-6, TNF-α, and NF-ĸB in the serum, were investigated as well as the mRNA expressions of PCNA, Bcl2, PI3K/Akt in the liver and pancreas. The in vitro analyses showed the potency of AEPAS against free radicals and its enzyme inhibitory potential as compared with the positive controls. AEPAS showed a marked decrease in alloxan-induced increases in FBG, TG, LDL-c, G6P, F-1, 6-BP, MDA, IL-6, TNF-α, and NF-ĸB and increased alloxan-induced decreases in liver glycogen, hexokinase, and HDL-c. The diabetic control group exhibited pancreatic dysfunction as evidenced by a reduction in serum insulin, HOMA-ß, expressions of PI3K/AKT, Bcl-2, and PCNA combined with an elevation in HOMA-IR. The HPLC revealed luteolin and myricetin to be the phytochemicals that were present in the highest concentration in AEPAS. The outcome of this research showed that the administration of AEPAS can promote the activation of the PI3K/AkT pathway and the inhibition of ß-cell death, which may be the primary mechanism by which AEPAS promotes insulin sensitivity and regulates glycolipid metabolism.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Hypoglycemic Agents , Persea/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Seeds/chemistry , Signal Transduction/genetics , Signal Transduction/physiology , Alloxan , Animals , Cell Death/drug effects , Diabetes Mellitus, Experimental/genetics , Glycolipids/metabolism , Insulin Resistance , Insulin-Secreting Cells/drug effects , Male , Rats , Rats, Wistar
15.
Biomed Pharmacother ; 148: 112730, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35183996

ABSTRACT

The increasing global burden of diabetes mellitus has called for the search for a therapeutic alternative that offers better activities and safety than conventional chemotherapy. Herein, we evaluated the neuroprotective and antioxidant properties of different fractions (ethyl acetate, N-butanol and residual aqueous) of Clompanus pubescens leaves in streptozotocin (STZ)-induced diabetic rats. Our results revealed a significant elevation in the levels of blood glucose, pro-inflammatory cytokines, lipid peroxidation, neuronal activities of acetylcholinesterase, butyrylcholinesterase, nitric oxide, epinephrine, norepinephrine, and Na+/K+-ATPase in diabetic non treated rats. In addition, decreased levels of enzymatic and non-enzymatic antioxidants were observed. Treatment with different fractions of C. pubescens leaves resulted in significant reversal of the biochemical alteration and improved the neurocognitive deficit in STZ induced diabetic rats. However, the ethyl-acetate fraction demonstrated higher activities than the other fractions and was characterized for its phytoconstituents, revealing the presence of Gallic acid (713.00 ppm), catechin (0.91 ppm), ferulic acid (0.98 ppm), rutin (59.82 ppm), quercetin (3.22 ppm) and kaempferol (4.07 ppm). Our molecular docking analysis revealed that these compounds exhibited different binding affinities and potentials for targeting BChE/AChE/ IL-1 ß/Na+ -K+ -ATPase. However, only Kampferol and ferulic exhibited good drug-like, ADMET, and permeability properties suitable for use as a neuronal drug target agent. Hence, the ethyl-acetate fraction of C. pubescens leaves could be considered as a source of promising bioactive metabolite for the treatment and management of cognitive impairments related to type II diabetes mellitus.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Acetylcholinesterase/metabolism , Animals , Antioxidants/therapeutic use , Blood Glucose/metabolism , Butyrylcholinesterase/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/drug therapy , Down-Regulation , Interleukin-1beta/metabolism , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Rats , Sodium-Potassium-Exchanging ATPase/metabolism , Streptozocin/adverse effects
16.
J Biomol Struct Dyn ; 40(2): 848-859, 2022 02.
Article in English | MEDLINE | ID: mdl-32924840

ABSTRACT

The worldwide expanding increment in cancer pervasiveness is disturbing and this disease ranks among the main causes of mortality in both developing and developed countries. Unfortunately, available treatment options come with serious side effects and do not guarantee complete success. Although numerous models have been proposed for the development of better therapeutic agent, however the exact mechanism are still poorly understood. This then calls for continued research aimed at developing new drugs as an alternative or adjuvant anticancer agents. Here we have identified five vital proteins (CDK-2, Bcl-2, CDK-6, VEGFR, and IGF-1R) that aid tumor growth and we inhibited the activity of these proteins with Puerarin. Puerarin is an isoflavonoid C-glycosides used as a therapeutic agent against various human ailments. Our findings revealed that Puerarin fulfilled Veber's rule. Added to this, CDK-6 and Bcl-2 had better glide scores for puerarin than the control (doxorubicin) and molecular simulation showed the stability of the complexes. These findings suggest that inhibiting CDK-6 and Bcl-2 with Puerarin could prove more effective in the management of cancer than doxorubicin. Overall, this study provides a new direction that could facilitate rational drug design for cancer.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Isoflavones , Neoplasms , Antineoplastic Agents/pharmacology , Apoptosis , Humans , Isoflavones/pharmacology , Neoplasms/drug therapy
17.
J Complement Integr Med ; 19(2): 323-333, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-33984878

ABSTRACT

OBJECTIVES: The current study evaluates the protective role of aqueous extract of Sterculia tragacantha leaf (AESTL) on pancreatic gene expressions (insulin, PCNA, PDX-1, KI-67 and GLP-1R) and oxidative stress parameters in streptozotocin-induced diabetic rats. METHODS: Diabetes mellitus was induced into the experimental Wistar animals via intraperitoneal (IP) injection of streptozotocin (35 mg/kg body weight) and 5% glucose water was given to the rats for 24 h after induction. The animals were categorized into five groups of 10 rats each as follows normal control, diabetic control, diabetic rats administered AESTL (150 and 300 mg/kg body weight) and diabetic rats administered metformin (200 mg/kg) orally for two weeks. Thereafter, the animals were euthanized, blood sample collected, pancreas harvested and some pancreatic gene expressions (such as insulin, PCNA, PDX-1, KI-67, and GLP-1R)s as well as oxidative stress parameters were analyzed. RESULTS: The results revealed that AESTL significantly (p<0.05) reduced fasting blood glucose level, food and water intake, and lipid peroxidation in diabetic rats. Diabetic rats administered different doses of AESTL showed a substantial upsurge in body weight, antioxidant enzyme activities, and pancreatic gene expressions (insulin, PCNA, PDX-1, KI-67, and GLP-1R). CONCLUSIONS: It can therefore be concluded that AESTL has the ability to protect the pancreas during diabetes mellitus conditions.


Subject(s)
Diabetes Mellitus, Experimental , Sterculia , Animals , Antioxidants/metabolism , Blood Glucose/metabolism , Body Weight , Gene Expression , Insulin , Ki-67 Antigen/metabolism , Oxidative Stress , Pancreas/metabolism , Plant Extracts , Proliferating Cell Nuclear Antigen/metabolism , Rats , Rats, Wistar , Streptozocin/metabolism
18.
Biomarkers ; 27(2): 169-177, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34951557

ABSTRACT

INTRODUCTION: The present study access the effect of the flavonoid-rich extract from Gongronema latifolium against cardiomyopathy streptozotocin-induced diabetic rats. MATERIALS AND METHODS: The flavonoid-rich extract from G. latifolium leaf (FREGL) was prepared using a standard method. Diabetes was induced by a single intraperitoneal (i.p.) injection of streptozotocin. The experimental animals were divided into five groups as non-diabetic rats, diabetic control, diabetic rats administered low and high doses of FREGL (13 and 26 mg/kg), and metformin-glibenclamide orally for 21 days. Hence, the experimental animals were sacrificed; blood and heart were harvested to determine diverse biochemical parameters, including the gene expressions of serpin A3 and socs3-a as well as histological examination. RESULTS: The results demonstrated that FREGL significantly (p < 0.05) reduced fasting blood glucose, total cholesterol, low density lipoprotein (LDL), triglyceride (TG), lipid peroxidation levels, as well as the activities of lactate dehydrogenase and creatine kinase-MB, including the relative gene expressions of serpin A3 and Socs3-A in diabetic rats. Also, diabetic rats that received different doses of FREGL showed a substantial rise in insulin and high density lipoprotein (HDL) levels, antioxidant enzyme activities, as well as, normal histoarchitecture of the heart tissues. CONCLUSION: Therefore, FREGL may be beneficial in alleviating diabetic cardiomyopathy.


Subject(s)
Apocynaceae , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Serpins , Animals , Apocynaceae/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetic Cardiomyopathies/drug therapy , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Plant Extracts/pharmacology , Rats , Rats, Wistar , Streptozocin/adverse effects , Suppressor of Cytokine Signaling 3 Protein
19.
J Oleo Sci ; 70(12): 1805-1814, 2021.
Article in English | MEDLINE | ID: mdl-34866110

ABSTRACT

Sterculia tragacantha (ST) Lindl leaf is commonly used locally in the management of diabetes mellitus (DM) and its complications. This study was aimed at assessing the valuable effects of ST leaf on streptozotocin-diabetic cardiomyopathy (DCM). Streptozotocin was administered intraperitoneally to the experimental animals to induce DM, and hence, placed on different doses of ST for 14 days. Thereafter, on the 15th day of the experiment, the animals were euthanized, and a number of cardiomyopathy indices were investigated. The diabetic rats exhibited a momentous increase in hyperlipidemia, lipid peroxidation as well as a significant (p < 0.05) decline in antioxidant enzyme activities. The serum creatine kinase MB (CK-MB), C-reactive protein (CRP), cardiac troponin I, tumour necrosis factor-alpha (TNF-α) and urotensin II expression revealed a significant (p < 0.05) upsurge in diabetic rats. Also, the expression of GLUT4 and fatty acid-binding protein 3 (FABP3) were significantly (p < 0.05) reduced in diabetic rats. However, at the conclusion of the experimental trial ST significantly (p < 0.05) attenuated hyperlipidemia, oxidative stress biomarkers by augmenting the antioxidant enzyme activities and decrease in lipid peroxidation, ameliorated CK-MB, CRP, cardiac troponin I, TNF-α, and urotensin-II levels, and improved GLUT4 and FABP3 expressions. Similarly, the administration of ST prevented histological alterations in the heart of diabetic animals. Therefore, the obtained results suggest that ST could mitigate DCM in streptozotocin-induced diabetic rats.


Subject(s)
Cardiomyopathies/drug therapy , Cardiomyopathies/genetics , Diabetes Mellitus, Experimental/complications , Fatty Acid Binding Protein 3/genetics , Fatty Acid Binding Protein 3/metabolism , Gene Expression/drug effects , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Sterculia/chemistry , Urotensins/genetics , Urotensins/metabolism , Animals , Cardiomyopathies/etiology , Gene Expression/genetics , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Male , Oxidative Stress , Plant Extracts/isolation & purification , Rats, Inbred Strains , Streptozocin , Water
20.
Biometals ; 34(5): 1141-1153, 2021 10.
Article in English | MEDLINE | ID: mdl-34365580

ABSTRACT

Cadmium is a toxic metal and poses a high environmental risk to animals and humans, alike. It is thus pertinent to search for medicinal plants in protecting against cadmium toxicity. This study aims at investigating the ability of aqueous extract of Persea americana seeds (AEPA) in ameliorating the toxic effects of cadmium in the kidneys of cadmium-exposed Wistar rats. Male Wistar rats were grouped into five, of six animals each. Different groups of animals received normal saline (control group), 200 mg/kg body weight AEPA, 400 mg/kg AEPA, and standard drug, Livolin Forte, respectively. A last group of animals was left untreated. To induce toxicity, all animals, except the control group, were exposed to cadmium (200 mg/L, as CdCl2) in their main drinking water for 21 days. Biochemical analysis of serum kidney markers, oxidative stress and antioxidant status, as well as anti-inflammatory activities, was done using standard methods and kits. In silico analysis was performed on phytochemicals reported to be abundant in AEPA. Treatment with 400 mg/kg AEPA significantly reversed (P ≤ 0.05) the adverse effect of cadmium on serum creatinine, urea, uric acid and blood urea nitrogen, and restored (P ≤ 0.05) antioxidant status, evidenced by its significant effect on superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, reduced glutathione, and lipid peroxidation activities. AEPA, at 400 mg/kg also exhibited significant anti-inflammatory effects, which was shown by reduced interleukin-2 and tumour necrosis factor α activities. Molecular docking of phytochemicals with the selected protein target also confirmed the therapeutic potential of AEPA. The study concluded that aqueous extract of AEPA protects against cadmium-induced kidney toxicity and inflammation.


Subject(s)
Cadmium , Persea , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Cadmium/metabolism , Kidney/metabolism , Lipid Peroxidation , Male , Molecular Docking Simulation , Oxidative Stress , Persea/metabolism , Rats , Rats, Wistar , Seeds
SELECTION OF CITATIONS
SEARCH DETAIL
...